Activating Signal Cointegrator 1 Is Highly Expressed in Murine Testicular Leydig Cells and Enhances the Ligand-Dependent Transactivation of Androgen Receptor

Activating signal cointegrator 1 (ASC-1) has been recently reported as a coactivator of some nuclear receptors. In the present study, we have analyzed the expression of ASC-1 in the mouse testis and investigated its capacity to modulate the transcriptional activity of androgen receptor (AR). We foun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2002-11, Vol.67 (5), p.1580-1587
Hauptverfasser: Lee, Yong Soo, Kim, Hyun-Jin, Lee, Hyun Ju, Lee, Jae Woon, Chun, Sang-Young, Ko, Sun-Kun, Lee, Keesook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activating signal cointegrator 1 (ASC-1) has been recently reported as a coactivator of some nuclear receptors. In the present study, we have analyzed the expression of ASC-1 in the mouse testis and investigated its capacity to modulate the transcriptional activity of androgen receptor (AR). We found that although ASC-1 mRNA was ubiquitously expressed at a low level in mouse tissues, a couple of testis-specific mRNAs were expressed in the adult testis. Cloning of one testis-specific variant revealed that the ubiquitous and testis-specific transcripts of ASC-1 share at least the same open reading frame. The expression of the testis-specific ASC-1 mRNAs was developmentally regulated, and the onset of their expression coincided with the initiation of spermatogenesis. In situ hybridization of mouse testis with ASC-1 antisense probe demonstrated predominant expression of ASC-1 in the interstitial Leydig cells that express AR. Moreover, yeast two-hybrid tests and glutathione S-transferase pull-down assays revealed that ASC-1 associates directly with AR and that the hinge domain of AR and a putative zinc-finger motif of ASC-1 are major determinants for their interaction. Transient transfection assays performed by expressing ASC-1 in combination with AR and an androgen-responsive reporter gene showed that ASC-1 moderately alters the induction of the reporter gene. Taken together, these results suggest that ASC-1 may function as an AR coregulator and have a role in testicular functions.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.102.006155