P130 and its truncated form mediate p53-induced cell cycle arrest in Rb(-/-) Saos2 cells

In the present study, we investigate the mechanism of how p53 induces growth arrest in Rb-defective Saos2 cells that express temperature-sensitive mutant p53 (ts p53). The activation of p53 at a permissive temperature (32.5 degrees C) induces the cell cycle arrest at both the G1 and G2 stages. The i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2002-10, Vol.21 (49), p.7569-7579
Hauptverfasser: Gao, Chong-Feng, Ren, Shuo, Wang, Jingfei, Zhang, Sheng-Liang, Jin, Feng, Nakajima, Takuma, Ikeda, Masaaki, Tsuchida, Nobuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, we investigate the mechanism of how p53 induces growth arrest in Rb-defective Saos2 cells that express temperature-sensitive mutant p53 (ts p53). The activation of p53 at a permissive temperature (32.5 degrees C) induces the cell cycle arrest at both the G1 and G2 stages. The induction of several p53-responsive genes as well as a small form of p130 (S-p130) was detected upon p53 activation. S-p130 retained the functions as a pocket protein and was dominant over p130 at the protein level after 36 h at 32.5 degrees C. A canonical p53 binding site was identified in intron 4 of p130. Furthermore, a novel p53-inducible transcript containing a partial intron 4 sequence downstream of the p53 binding site and exon 5 of p130 was detected by RT-PCR, suggesting S-p130 is induced by p53 at transcriptional level. The results from gel shift assay and immunoprecipitation showed that S-p130 as well as p130 formed complexes with both E2F1 and E2F4 at a permissive temperature. Moreover, the transient expression of E1A (12S) and E2F1 effectively abrogated p53-induced cell cycle arrest. These results strongly suggested that p130 and its truncated form might substitute Rb in mediating p53-induced cell cycle arrest in Rb(-/-) Saos2 cells.
ISSN:0950-9232
DOI:10.1038/sj.onc.1205933