Tris-benzimidazole derivatives : Design, synthesis and DNA sequence recognition
Two tris-benzimidazole derivatives have been designed and synthesized based on the known structures of the bis-benzimidazole stain Hoechst 33258 complexed to short oligonucleotide duplexes derived from single crystal X-ray studies and from NMR. In both derivatives the phenol group has been replaced...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2001-11, Vol.9 (11), p.2905-2919 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two tris-benzimidazole derivatives have been designed and synthesized based on the known structures of the bis-benzimidazole stain Hoechst 33258 complexed to short oligonucleotide duplexes derived from single crystal X-ray studies and from NMR. In both derivatives the phenol group has been replaced by a methoxy-phenyl substituent. Whereas one tris-benzimidazole carries a N-methyl-piperazine at the 6-position, the other one has this group replaced by a 2-amino-pyrrolidine ring. This latter substituent results in stronger DNA binding. The optimized synthesis of the drugs is described. The two tris-benzimidazoles exhibit high AT-base pair (bp) selectivity evident in footprinting experiments which show that five to six base pairs are protected by the tris-benzimidazoles as compared to four to five protected by the bis-benzimidazoles. The tris-benzimidazoles bind well to sequences like 5'-TAAAC, 5'-TTTAC and 5'-TTTAT, but it is also evident that they can bind weakly to sequences such as 5'-TATGTT-3' where the continuity of an AT stretch is interrupted by a single G*C base pair. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/S0968-0896(01)00170-5 |