Steric Barrier to Bathorhodopsin Decay in 5-Demethyl and Mesityl Analogues of Rhodopsin

Absorbance difference spectra were recorded from 20 ns to 1 μs after 20 °C photoexcitation of artificial visual pigments derived either from 5-demethylretinal or from a mesityl analogue of retinal. Both pigments produced an early photointermediate similar to bovine bathorhodopsin (Batho). In both ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2001-10, Vol.123 (41), p.10024-10029
Hauptverfasser: Lewis, James W, Fan, Gui-Bao, Sheves, Mordechai, Szundi, Istvan, Kliger, David S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Absorbance difference spectra were recorded from 20 ns to 1 μs after 20 °C photoexcitation of artificial visual pigments derived either from 5-demethylretinal or from a mesityl analogue of retinal. Both pigments produced an early photointermediate similar to bovine bathorhodopsin (Batho). In both cases the Batho analogue decayed to a lumirhodopsin (Lumi) analogue via a blue-shifted intermediate, BSI, which formed an equilibrium with the Batho analogue. The stability of 5-demethyl Batho, even though the C8-hydrogen of the polyene chain cannot interact with a ring C5-methyl group to provide a barrier to Batho decay, raises the possibility that the 5-demethylretinal ring binds oppositely from normal to form a pigment with a 6-s-trans ring-chain conformation. If 6-s-trans binding occurred, the ring C1-methyls could replace the C5-methyl in its interaction with the chain C8-hydrogen to preserve the steric barrier to Batho decay, consistent with the kinetic results. The possibility of 6-s-trans binding for 5-demethylretinal also could account for the unexpected blue shift of 5-demethyl visual pigments and could explain why 5-demethyl artificial pigments regenerate so slowly. Although the mesityl analogue BSI's absorption spectrum was blue-shifted relative to its pigment spectrum, the blue shift was much smaller than for rhodopsin's or 5-demethylisorhodopsin's BSI. This suggests that increased C6−C7 torsion may be responsible for some of BSI's blue shift, which is not the case for mesityl analogue BSI either because of reduced spectral sensitivity to C6−C7 torsion or because the symmetry of the mesityl retinal analogue precludes having 6-s-cis and 6-s-trans conformers. The similarity of the mesityl analogue BSI and native BSI λmax values supports the idea that BSI has a 6-s angle near 90°, a condition which could disconnect the chain (and BSI's spectrum) from the double bond specifics of the ring.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja010724q