JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms
Phosphorylation of the N-terminal domain of Jun by the Jun kinases (JNKs) modulates the transcriptional activity of AP-1, a dimeric transcription factor typically composed of c-Jun and c-Fos, the latter being essential for osteoclast differentiation. Using mice lacking JNK1 or JNK2, we demonstrate t...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2002-11, Vol.115 (Pt 22), p.4317-4325 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorylation of the N-terminal domain of Jun by the Jun kinases (JNKs) modulates the transcriptional activity of AP-1, a dimeric transcription factor typically composed of c-Jun and c-Fos, the latter being essential for osteoclast differentiation. Using mice lacking JNK1 or JNK2, we demonstrate that JNK1, but not JNK2, is specifically activated by the osteoclast-differentiating factor RANKL. Activation of JNK1, but not JNK2, is required for efficient osteoclastogenesis from bone marrow monocytes (BMMs). JNK1 protects BMMs from RANKL-induced apoptosis during differentiation. In addition, BMMs from mice carrying a mutant of c-Jun phosphorylation sites (JunAA/JunAA), as well as cells lacking either c-Jun or JunD, which is another JNK substrate, revealed that c-Jun phosphorylation and c-Jun itself, but not JunD, are essential for efficient osteoclastogenesis. Moreover, JNK1-dependent c-Jun phosphorylation in response to RANKL is not involved in the anti-apoptotic function of JNK1. Thus, these data provide genetic evidence that JNK1 activation modulates osteoclastogenesis through both c-Jun-phosphorylation-dependent and -independent mechanisms. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.00082 |