Neuroelectrical signs of selective attention to color in boys with attention-deficit hyperactivity disorder

In order to gain insight into the functional and macroanatomical loci of visual selective processing deficits that may be basic to attention-deficit hyperactivity disorder (ADHD), the present study examined multi-channel event-related potentials (ERPs) recorded from 7- to 11-year-old boys clinically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research. Cognitive brain research 2001-10, Vol.12 (2), p.245-264
Hauptverfasser: van der Stelt, Odin, van der Molen, Maurits, Boudewijn Gunning, W, Kok, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to gain insight into the functional and macroanatomical loci of visual selective processing deficits that may be basic to attention-deficit hyperactivity disorder (ADHD), the present study examined multi-channel event-related potentials (ERPs) recorded from 7- to 11-year-old boys clinically diagnosed as having ADHD ( n=24) and age-matched healthy control boys ( n=24) while they performed a visual (color) selective attention task. The spatio-temporal dynamics of several ERP components related to attention to color were characterized using topographic profile analysis, topographic mapping of the ERP and associated scalp current density distributions, and spatio-temporal source potential modeling. Boys with ADHD showed a lower target hit rate, a higher false-alarm rate, and a lower perceptual sensitivity than controls. Also, whereas color attention induced in the ERPs from controls a characteristic early frontally maximal selection positivity (FSP), ADHD boys displayed little or no FSP. Similarly, ADHD boys manifested P3b amplitude decrements that were partially lateralized (i.e., maximal at left temporal scalp locations) as well as affected by maturation. These results indicate that ADHD boys suffer from deficits at both relatively early (sensory) and late (semantic) levels of visual selective information processing. The data also support the hypothesis that the visual selective processing deficits observed in the ADHD boys originate from deficits in the strength of activation of a neural network comprising prefrontal and occipito-temporal brain regions. This network seems to be actively engaged during attention to color and may contain the major intracerebral generating sources of the associated scalp-recorded ERP components.
ISSN:0926-6410
DOI:10.1016/S0926-6410(01)00055-6