Attention-Dependent Changes of Activation and Connectivity in Dichotic Listening

Functional studies of auditory spatial attention generally report enhanced neural responses in auditory cortical regions. However, activity in regions of the spatial attentional network as described in the visual modality is not consistently observed. Data analysis limitations due to oppositely late...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2002-10, Vol.17 (2), p.643-656
Hauptverfasser: Lipschutz, Brigitte, Kolinsky, Régine, Damhaut, Philippe, Wikler, David, Goldman, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional studies of auditory spatial attention generally report enhanced neural responses in auditory cortical regions. However, activity in regions of the spatial attentional network as described in the visual modality is not consistently observed. Data analysis limitations due to oppositely lateralized activity depending on the side of attentional orientation and heterogeneity of paradigms makes it hard to untangle the possible causes of these various activation patterns. In the present article we present a PET study of auditory spatial attention in which we manipulated orientation of attention, attentional load, and difficulty of the task by means of the dichotic listening paradigm. Moreover, we designed a systematic, voxel-specific, method in order to deal with oppositely lateralized activity. The results show that when listeners are involved in auditory spatial attention tasks an interacting network of frontal, temporal, and parietal regions is activated. Selective orientation toward one side mostly yields activity and connectivity modulations in the hemisphere contralateral to the attended side while in divided attention activity is mostly bilateral. Taken together, our observations are consistent with the idea of a multimodal large-scale attentional network.
ISSN:1053-8119
1095-9572
DOI:10.1006/nimg.2002.1184