Fos and FRA protein expression in rat nucleus paragigantocellularis lateralis during different space flight conditions

The nucleus paragigantocellularis lateralis (LPGi) exerts a prominent excitatory influence over locus coeruleus (LC) neurons, which respond to gravity signals. We investigated whether adult albino rats exposed to different gravitational fields during the NASA Neurolab Mission (STS-90) showed changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research bulletin 2002-10, Vol.59 (1), p.65-74
Hauptverfasser: D'ASCANIO, Paola, CENTINI, Claudia, POMPEIANO, Maria, POMPEIANO, Ottavio, BALABAN, Evan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nucleus paragigantocellularis lateralis (LPGi) exerts a prominent excitatory influence over locus coeruleus (LC) neurons, which respond to gravity signals. We investigated whether adult albino rats exposed to different gravitational fields during the NASA Neurolab Mission (STS-90) showed changes in Fos and Fos-related antigen (FRA) protein expression in the LPGi and related cardiovascular, vasomotor, and respiratory areas. Fos and FRA proteins are induced rapidly by external stimuli and return to basal levels within hours (Fos) or days (FRA) after stimulation. Exposure to a light pulse (LP) 1 h prior to sacrifice led to increased Fos expression in subjects maintained for 2 weeks in constant gravity (either at approximately 0 or 1 G). Within 24 h of a gravitational change (launch or landing), the Fos response to LP was abolished. A significant Fos response was also induced by gravitational stimuli during landing, but not during launch. FRA responses to LP showed a mirror image pattern, with significant responses 24 h after launch and landing, but no responses after 2 weeks at approximately 0 or 1 G. There were no direct FRA responses to gravity changes. The juxtafacial and retrofacial parts of the LPGi, which integrate somatosensory/acoustic and autonomic signals, respectively, also showed gravity-related increases in LP-induced FRA expression 24 h after launch and landing. The neighboring nucleus ambiguus (Amb) showed completely different patterns of Fos and FRA expression, demonstrating the anatomical specificity of these results. Immediate early gene expression in the LPGi and related cardiovascular vasomotor and ventral respiratory areas may be directly regulated by excitatory afferents from vestibular gravity receptors. These structures could play an important role in shaping cardiovascular and respiratory function during adaptation to altered gravitational environments encountered during space flight and after return to earth.
ISSN:0361-9230
1873-2747
DOI:10.1016/S0361-9230(02)00840-7