Tandem mass spectrometry of peptides using hybrid and four-sector instruments: A comparative study

Product-ion spectra produced by high- and low-energy collisionally activated dissociation (CAD) of [M + H]+ ions of a series of peptides (Mr 550-2500) have been compared on four-sector and hybrid tandem mass spectrometers, respectively. The fast atom bombardment product-ion spectra obtained for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1991-07, Vol.63 (14), p.1473-1481
Hauptverfasser: Bean, Mark F, Carr, Steven A, Thorne, Gareth C, Reilly, Marc H, Gaskell, Simon J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Product-ion spectra produced by high- and low-energy collisionally activated dissociation (CAD) of [M + H]+ ions of a series of peptides (Mr 550-2500) have been compared on four-sector and hybrid tandem mass spectrometers, respectively. The fast atom bombardment product-ion spectra obtained for the smallest peptide analyzed (methionine-enkephalin) were remarkably similar, but substantial differences in fragmentation were observed for the heavier analytes. For peptides with Mr greater than 1000, more complete sequence information was obtained from high-energy CAD on the four-sector instrument. Nevertheless, low-energy CAD on the hybrid mass spectrometer was able to produce partial sequence information even for the largest of the peptides compared. Limits of analysis, defined as the least quantities of analyte for which product-ion spectra of essentially uncompromised quality could be obtained, were similar (ca. 15 pmol) for small peptides, but lower limits were achieved for larger peptides (Mr greater than 1000) with the four-sector instrument. High-energy CAD spectra were found to be highly reproducible, with qualitatively similar spectra obtained over a wide range of operating conditions. In contrast, it was necessary to carefully control collision gas pressures and collision energies in order to obtain good reproducible data for low-energy CAD. Experimental procedures for obtaining reproducible spectra with good sensitivity for peptides on the hybrid instrument are presented.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac00014a024