An improved OPLS-AA force field for carbohydrates

This work describes an improved version of the original OPLS–all atom (OPLS–AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5‐ and 1,6‐interactions. This new m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2002-11, Vol.23 (15), p.1416-1429
Hauptverfasser: Kony, D., Damm, W., Stoll, S., Van Gunsteren, W. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1429
container_issue 15
container_start_page 1416
container_title Journal of computational chemistry
container_volume 23
creator Kony, D.
Damm, W.
Stoll, S.
Van Gunsteren, W. F.
description This work describes an improved version of the original OPLS–all atom (OPLS–AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5‐ and 1,6‐interactions. This new model is tested first for improving the conformational energetics of 1,2‐ethanediol, the smallest polyol. With a 1,5‐scaling factor of 1.25 the force field calculated relative energies are in excellent agreement with the ab initio‐derived data. Applying the new 1,5‐scaling makes it also necessary to use a 1,6‐scaling factor for the interactions between the C4 and C6 atoms in hexopyranoses. After torsional parameter fitting, this improves the conformational energetics in comparison to the OPLS–AA force field. The set of hexopyranoses included in the torsional parameter derivation consists of the two anomers of D‐glucose, D‐mannose, and D‐galactose, as well as of the methyl‐pyranosides of D‐glucose, D‐mannose. Rotational profiles for the rotation of the exocyclic group and of different hydroxyl groups are also compared for the two force fields and at the ab initio level of theory. The new force field reduces the overly high barriers calculated using the OPLS–AA force field. This leads to better sampling, which was shown to produce more realistic conformational behavior for hexopyranoses in liquid simulation. From 10‐ns molecular dynamics (MD) simulations of α‐D‐glucose and α‐D‐galactose the ratios for the three different conformations of the hydroxymethylene group and the average 3JH,H coupling constants are derived and compared to experimental values. The results obtained for OPLS–AA–SEI force field are in good agreement with experiment whereas the properties derived for the OPLS–AA force field suffer from sampling problems. The undertaken investigations show that the newly derived OPLS–AA–SEI force field will allow simulating larger carbohydrates or polysaccharides with improved sampling of the hydroxyl groups. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1416–1429, 2002
doi_str_mv 10.1002/jcc.10139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72159764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72159764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4259-e7f15eba7d33d7eee8260fab3dfa2d180d57e7ca67338c3a6fd295aabadcbcb93</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUw8AdQJiSGUDuO43iMIlpAhVbio4jFcuyLSEmaYrdA_z0pKTAx3Q3P--juReiY4HOCcdCfad0shIod1CVYRL6I-dMu6mIiAj-OGOmgA-dmGGPKonAfdUhAORZh2EUkmXtFtbD1OxhvPBnd-Uni5bXV4OUFlGaze1rZrH5ZG6uW4A7RXq5KB0fb2UMPg4v79NIfjYdXaTLydRgw4QPPCYNMcUOp4QAQBxHOVUZNrgJDYmwYB65VxCmNNVVRbgLBlMqU0ZnOBO2h09bbHPe2AreUVeE0lKWaQ71ykgeECR6FDXjWgtrWzlnI5cIWlbJrSbDc9CObfuR3Pw17spWusgrMH7ktpAH6LfBRlLD-3ySv0_RH6beJwi3h8zeh7KtsfuNMTm-Hkt1MpwPyPJGP9As-TX3m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72159764</pqid></control><display><type>article</type><title>An improved OPLS-AA force field for carbohydrates</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kony, D. ; Damm, W. ; Stoll, S. ; Van Gunsteren, W. F.</creator><creatorcontrib>Kony, D. ; Damm, W. ; Stoll, S. ; Van Gunsteren, W. F.</creatorcontrib><description>This work describes an improved version of the original OPLS–all atom (OPLS–AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5‐ and 1,6‐interactions. This new model is tested first for improving the conformational energetics of 1,2‐ethanediol, the smallest polyol. With a 1,5‐scaling factor of 1.25 the force field calculated relative energies are in excellent agreement with the ab initio‐derived data. Applying the new 1,5‐scaling makes it also necessary to use a 1,6‐scaling factor for the interactions between the C4 and C6 atoms in hexopyranoses. After torsional parameter fitting, this improves the conformational energetics in comparison to the OPLS–AA force field. The set of hexopyranoses included in the torsional parameter derivation consists of the two anomers of D‐glucose, D‐mannose, and D‐galactose, as well as of the methyl‐pyranosides of D‐glucose, D‐mannose. Rotational profiles for the rotation of the exocyclic group and of different hydroxyl groups are also compared for the two force fields and at the ab initio level of theory. The new force field reduces the overly high barriers calculated using the OPLS–AA force field. This leads to better sampling, which was shown to produce more realistic conformational behavior for hexopyranoses in liquid simulation. From 10‐ns molecular dynamics (MD) simulations of α‐D‐glucose and α‐D‐galactose the ratios for the three different conformations of the hydroxymethylene group and the average 3JH,H coupling constants are derived and compared to experimental values. The results obtained for OPLS–AA–SEI force field are in good agreement with experiment whereas the properties derived for the OPLS–AA force field suffer from sampling problems. The undertaken investigations show that the newly derived OPLS–AA–SEI force field will allow simulating larger carbohydrates or polysaccharides with improved sampling of the hydroxyl groups. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1416–1429, 2002</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.10139</identifier><identifier>PMID: 12370944</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>1,2‐ethanediol ; 2-ethanediol ; Carbohydrate Conformation ; carbohydrates ; Carbohydrates - chemistry ; conformational analysis ; Ethylene Glycols - chemistry ; force field ; hexopyranoses ; Models, Chemical ; Models, Molecular ; molecular dynamics ; Molecular Structure</subject><ispartof>Journal of computational chemistry, 2002-11, Vol.23 (15), p.1416-1429</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><rights>Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1416-1429, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4259-e7f15eba7d33d7eee8260fab3dfa2d180d57e7ca67338c3a6fd295aabadcbcb93</citedby><cites>FETCH-LOGICAL-c4259-e7f15eba7d33d7eee8260fab3dfa2d180d57e7ca67338c3a6fd295aabadcbcb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.10139$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.10139$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12370944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kony, D.</creatorcontrib><creatorcontrib>Damm, W.</creatorcontrib><creatorcontrib>Stoll, S.</creatorcontrib><creatorcontrib>Van Gunsteren, W. F.</creatorcontrib><title>An improved OPLS-AA force field for carbohydrates</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>This work describes an improved version of the original OPLS–all atom (OPLS–AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5‐ and 1,6‐interactions. This new model is tested first for improving the conformational energetics of 1,2‐ethanediol, the smallest polyol. With a 1,5‐scaling factor of 1.25 the force field calculated relative energies are in excellent agreement with the ab initio‐derived data. Applying the new 1,5‐scaling makes it also necessary to use a 1,6‐scaling factor for the interactions between the C4 and C6 atoms in hexopyranoses. After torsional parameter fitting, this improves the conformational energetics in comparison to the OPLS–AA force field. The set of hexopyranoses included in the torsional parameter derivation consists of the two anomers of D‐glucose, D‐mannose, and D‐galactose, as well as of the methyl‐pyranosides of D‐glucose, D‐mannose. Rotational profiles for the rotation of the exocyclic group and of different hydroxyl groups are also compared for the two force fields and at the ab initio level of theory. The new force field reduces the overly high barriers calculated using the OPLS–AA force field. This leads to better sampling, which was shown to produce more realistic conformational behavior for hexopyranoses in liquid simulation. From 10‐ns molecular dynamics (MD) simulations of α‐D‐glucose and α‐D‐galactose the ratios for the three different conformations of the hydroxymethylene group and the average 3JH,H coupling constants are derived and compared to experimental values. The results obtained for OPLS–AA–SEI force field are in good agreement with experiment whereas the properties derived for the OPLS–AA force field suffer from sampling problems. The undertaken investigations show that the newly derived OPLS–AA–SEI force field will allow simulating larger carbohydrates or polysaccharides with improved sampling of the hydroxyl groups. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1416–1429, 2002</description><subject>1,2‐ethanediol</subject><subject>2-ethanediol</subject><subject>Carbohydrate Conformation</subject><subject>carbohydrates</subject><subject>Carbohydrates - chemistry</subject><subject>conformational analysis</subject><subject>Ethylene Glycols - chemistry</subject><subject>force field</subject><subject>hexopyranoses</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>Molecular Structure</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqUw8AdQJiSGUDuO43iMIlpAhVbio4jFcuyLSEmaYrdA_z0pKTAx3Q3P--juReiY4HOCcdCfad0shIod1CVYRL6I-dMu6mIiAj-OGOmgA-dmGGPKonAfdUhAORZh2EUkmXtFtbD1OxhvPBnd-Uni5bXV4OUFlGaze1rZrH5ZG6uW4A7RXq5KB0fb2UMPg4v79NIfjYdXaTLydRgw4QPPCYNMcUOp4QAQBxHOVUZNrgJDYmwYB65VxCmNNVVRbgLBlMqU0ZnOBO2h09bbHPe2AreUVeE0lKWaQ71ykgeECR6FDXjWgtrWzlnI5cIWlbJrSbDc9CObfuR3Pw17spWusgrMH7ktpAH6LfBRlLD-3ySv0_RH6beJwi3h8zeh7KtsfuNMTm-Hkt1MpwPyPJGP9As-TX3m</recordid><startdate>20021130</startdate><enddate>20021130</enddate><creator>Kony, D.</creator><creator>Damm, W.</creator><creator>Stoll, S.</creator><creator>Van Gunsteren, W. F.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20021130</creationdate><title>An improved OPLS-AA force field for carbohydrates</title><author>Kony, D. ; Damm, W. ; Stoll, S. ; Van Gunsteren, W. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4259-e7f15eba7d33d7eee8260fab3dfa2d180d57e7ca67338c3a6fd295aabadcbcb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>1,2‐ethanediol</topic><topic>2-ethanediol</topic><topic>Carbohydrate Conformation</topic><topic>carbohydrates</topic><topic>Carbohydrates - chemistry</topic><topic>conformational analysis</topic><topic>Ethylene Glycols - chemistry</topic><topic>force field</topic><topic>hexopyranoses</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>Molecular Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kony, D.</creatorcontrib><creatorcontrib>Damm, W.</creatorcontrib><creatorcontrib>Stoll, S.</creatorcontrib><creatorcontrib>Van Gunsteren, W. F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kony, D.</au><au>Damm, W.</au><au>Stoll, S.</au><au>Van Gunsteren, W. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved OPLS-AA force field for carbohydrates</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2002-11-30</date><risdate>2002</risdate><volume>23</volume><issue>15</issue><spage>1416</spage><epage>1429</epage><pages>1416-1429</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>This work describes an improved version of the original OPLS–all atom (OPLS–AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5‐ and 1,6‐interactions. This new model is tested first for improving the conformational energetics of 1,2‐ethanediol, the smallest polyol. With a 1,5‐scaling factor of 1.25 the force field calculated relative energies are in excellent agreement with the ab initio‐derived data. Applying the new 1,5‐scaling makes it also necessary to use a 1,6‐scaling factor for the interactions between the C4 and C6 atoms in hexopyranoses. After torsional parameter fitting, this improves the conformational energetics in comparison to the OPLS–AA force field. The set of hexopyranoses included in the torsional parameter derivation consists of the two anomers of D‐glucose, D‐mannose, and D‐galactose, as well as of the methyl‐pyranosides of D‐glucose, D‐mannose. Rotational profiles for the rotation of the exocyclic group and of different hydroxyl groups are also compared for the two force fields and at the ab initio level of theory. The new force field reduces the overly high barriers calculated using the OPLS–AA force field. This leads to better sampling, which was shown to produce more realistic conformational behavior for hexopyranoses in liquid simulation. From 10‐ns molecular dynamics (MD) simulations of α‐D‐glucose and α‐D‐galactose the ratios for the three different conformations of the hydroxymethylene group and the average 3JH,H coupling constants are derived and compared to experimental values. The results obtained for OPLS–AA–SEI force field are in good agreement with experiment whereas the properties derived for the OPLS–AA force field suffer from sampling problems. The undertaken investigations show that the newly derived OPLS–AA–SEI force field will allow simulating larger carbohydrates or polysaccharides with improved sampling of the hydroxyl groups. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1416–1429, 2002</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12370944</pmid><doi>10.1002/jcc.10139</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2002-11, Vol.23 (15), p.1416-1429
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_72159764
source MEDLINE; Access via Wiley Online Library
subjects 1,2‐ethanediol
2-ethanediol
Carbohydrate Conformation
carbohydrates
Carbohydrates - chemistry
conformational analysis
Ethylene Glycols - chemistry
force field
hexopyranoses
Models, Chemical
Models, Molecular
molecular dynamics
Molecular Structure
title An improved OPLS-AA force field for carbohydrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20OPLS-AA%20force%20field%20for%20carbohydrates&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Kony,%20D.&rft.date=2002-11-30&rft.volume=23&rft.issue=15&rft.spage=1416&rft.epage=1429&rft.pages=1416-1429&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.10139&rft_dat=%3Cproquest_cross%3E72159764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72159764&rft_id=info:pmid/12370944&rfr_iscdi=true