An improved OPLS-AA force field for carbohydrates

This work describes an improved version of the original OPLS–all atom (OPLS–AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5‐ and 1,6‐interactions. This new m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2002-11, Vol.23 (15), p.1416-1429
Hauptverfasser: Kony, D., Damm, W., Stoll, S., Van Gunsteren, W. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work describes an improved version of the original OPLS–all atom (OPLS–AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5‐ and 1,6‐interactions. This new model is tested first for improving the conformational energetics of 1,2‐ethanediol, the smallest polyol. With a 1,5‐scaling factor of 1.25 the force field calculated relative energies are in excellent agreement with the ab initio‐derived data. Applying the new 1,5‐scaling makes it also necessary to use a 1,6‐scaling factor for the interactions between the C4 and C6 atoms in hexopyranoses. After torsional parameter fitting, this improves the conformational energetics in comparison to the OPLS–AA force field. The set of hexopyranoses included in the torsional parameter derivation consists of the two anomers of D‐glucose, D‐mannose, and D‐galactose, as well as of the methyl‐pyranosides of D‐glucose, D‐mannose. Rotational profiles for the rotation of the exocyclic group and of different hydroxyl groups are also compared for the two force fields and at the ab initio level of theory. The new force field reduces the overly high barriers calculated using the OPLS–AA force field. This leads to better sampling, which was shown to produce more realistic conformational behavior for hexopyranoses in liquid simulation. From 10‐ns molecular dynamics (MD) simulations of α‐D‐glucose and α‐D‐galactose the ratios for the three different conformations of the hydroxymethylene group and the average 3JH,H coupling constants are derived and compared to experimental values. The results obtained for OPLS–AA–SEI force field are in good agreement with experiment whereas the properties derived for the OPLS–AA force field suffer from sampling problems. The undertaken investigations show that the newly derived OPLS–AA–SEI force field will allow simulating larger carbohydrates or polysaccharides with improved sampling of the hydroxyl groups. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1416–1429, 2002
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.10139