Enhancement of rat intestinal calcium absorption by vanadate

Vanadate alters intestinal transport and may have a role in regulating cell function. To determine whether it influences calcium absorption, we tested the effects of acute and chronic vanadate administration on calcium absorption using single-pass perfusion of jejunal and ileal segments of the in vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental biology and medicine (Maywood, N.J.) N.J.), 1991-11, Vol.198 (2), p.754-759
Hauptverfasser: Rowe, William A., Tomicic, Tatjana K., Hajjar, Jean-Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vanadate alters intestinal transport and may have a role in regulating cell function. To determine whether it influences calcium absorption, we tested the effects of acute and chronic vanadate administration on calcium absorption using single-pass perfusion of jejunal and ileal segments of the in vivo rat intestine. Acute vanadate administration increased the lumen-to-mucoss and not fluxes of calcium in both the jejunum and ileum. The increase was largely due to an enhancement of the saturable fluxes of calcium and was observed at 10(-4) M concentration of vanadate, but not at higher or lower concentrations of the oxyanion, except at the highest concentration used, 10(-2) M, where calcium absorption was inhibited. Chronic vanadate administration caused, on the other hand, no changes in calcium absorption. We have demonstrated previously that rat intestinal (Na+ + K+)-ATPase is inhibited by vanadate, an effect that could raise cell sodium and increase the efflux of sodium across the brush border membrane. The results suggest that the vanadate enhancement of calcium absorption may be related to an increased entry of calcium into the mucosa, possibly as a result of an augmented exchange through the Na+/Ca+ antiport system. Alternatively, vanadate may influence access to a calcium channel in the mucosal membrane of the intestinal epithelium, leading to the observed increase in absorption.
ISSN:0037-9727
1535-3702
1525-1373
1535-3699
DOI:10.3181/00379727-198-43315