Molecular cloning and function of ecdysis-triggering hormones in the silkworm Bombyx mori

Inka cells of the epitracheal endocrine system produce peptide hormones involved in the regulation of insect ecdysis. In the silkworm Bombyx mori, injection of Inka cell extract into pharate larvae, pupae or adults activates the ecdysis behavioural sequence. In the present study, we report the ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2002-11, Vol.205 (Pt 22), p.3459-3473
Hauptverfasser: Zitnan, Dusan, Hollar, Laura, Spalovská, Ivana, Takác, Peter, Zitnanová, Inka, Gill, Sarjeet S, Adams, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inka cells of the epitracheal endocrine system produce peptide hormones involved in the regulation of insect ecdysis. In the silkworm Bombyx mori, injection of Inka cell extract into pharate larvae, pupae or adults activates the ecdysis behavioural sequence. In the present study, we report the identification of three peptides in these extracts, pre-ecdysis-triggering hormone (PETH), ecdysis-triggering hormone (ETH) and ETH-associated peptide (ETH-AP), which are encoded by the same cDNA precursor. Strong immunoreactivity associated with each peptide in Inka cells prior to ecdysis disappears during each ecdysis, indicating complete release of these peptides. Injection of either PETH or ETH alone is sufficient to elicit the entire ecdysis behavioural sequence through the direct action on abdominal ganglia; cephalic and thoracic ganglia are not required for the transition from pre-ecdysis to ecdysis behaviour. Our in vitro data provide evidence that these peptides control the entire ecdysis behavioural sequence through activation of specific circuits in the nervous system. Ecdysis of intact larvae is associated with the central release of eclosion hormone (EH) and elevation of cyclic 3',5'-guanosine monophosphate (cGMP) in the ventral nerve cord. However, injection of ETH into isolated abdomens induces cGMP elevation and ecdysis behaviour without a detectable release of EH, suggesting that an additional central factor(s) may be involved in the activation of this process. Our findings provide the first detailed account of the natural and hormonally induced behavioural sequence preceding larval, pupal and adult ecdyses of B. mori and highlight significant differences in the neuro-endocrine activation of pre-ecdysis and ecdysis behaviours compared with the related moth, Manduca sexta.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.205.22.3459