Adenosine triphosphate accelerates recovery from hypoxic/hypoglycemic perturbation of guinea pig hippocampal neurotransmission via a P(2) receptor
The present study was designed to assess the effects of adenosine triphosphate (ATP) on hippocampal neurotransmissions under the normal and hypoxic/hypoglycemic conditions. ATP reversely depressed population spikes (PSs), which were monitored in the dentate gyrus of guinea pig hippocampal slices, in...
Gespeichert in:
Veröffentlicht in: | Brain research 2002-10, Vol.952 (1), p.31-37 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study was designed to assess the effects of adenosine triphosphate (ATP) on hippocampal neurotransmissions under the normal and hypoxic/hypoglycemic conditions. ATP reversely depressed population spikes (PSs), which were monitored in the dentate gyrus of guinea pig hippocampal slices, in a dose-dependent manner at concentrations ranged from 0.1 micro M to 1 mM. A similar depression was obtained with the P(2) receptor agonist, alpha,beta-methylene ATP (alpha,beta-MeATP), and the effect was inhibited by the P(2) receptor antagonists, suramin and PPADS. The inhibitory action of ATP or alpha,beta-MeATP was inhibited by the gamma-aminobutyric acid(A) (GABA(A)) receptor antagonist, bicuculline, but it was not affected by theophylline, a broad inhibitor of adenosine (P(1)) receptors, tetraethylammonium, a broad inhibitor of K(+) channels, or ecto-protein kinase inhibitors. ATP or alpha,beta-MeATP enhanced GABA release from guinea pig hippocampal slices, that was inhibited by deleting extracellular Ca(2+) or in the presence of tetrodotoxin, while ATP had no effect on GABA release from cultured rat hippocampal astrocytes or postsynaptic GABA-gated channel currents in cultured rat hippocampal neurons. Twenty-minutes deprivation of glucose and oxygen from extracellular solution abolished PSs, the amplitude recovering to about 30% of basal levels 50 min after returning to normal conditions. ATP or alpha,beta-MeATP accelerated the recovery after hypoxic/hypoglycemic insult (approximately 80% of basal levels). Adenosine diphosphate and adenosine monophosphate accelerated the recovery, but to a much lesser extent, and adenosine had no effect. The results of the present study thus suggest that ATP inhibits neuronal activity by enhancing neuronal GABA release via a P(2) receptor, perhaps a P2X receptor, thereby protecting against hypoxic/hypoglycemic perturbation of hippocampal neurotransmission. |
---|---|
ISSN: | 0006-8993 |