2.8 Å Crystal Structures of Recombinant Fibrinogen Fragment D with and without Two Peptide Ligands:  GHRP Binding to the “b” Site Disrupts Its Nearby Calcium-binding Site

We report two crystal structures, each at a resolution of 2.8 Å, of recombinant human fibrinogen fragment D (rfD) in the absence and presence of peptide ligands. The bound ligands, Gly-Pro-Arg-Pro-amide and Gly-His-Arg-Pro-amide, mimic the interactions of the thrombin exposed polymerization sites, “...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2002-10, Vol.41 (40), p.12124-12132
Hauptverfasser: Kostelansky, Michael S, Betts, Laurie, Gorkun, Oleg V, Lord, Susan T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report two crystal structures, each at a resolution of 2.8 Å, of recombinant human fibrinogen fragment D (rfD) in the absence and presence of peptide ligands. The bound ligands, Gly-Pro-Arg-Pro-amide and Gly-His-Arg-Pro-amide, mimic the interactions of the thrombin exposed polymerization sites, “A” and “B”, respectively. This report is the first to describe the structure of fragment D in the presence of both peptide ligands. The structures reveal that recombinant fibrinogen is nearly identical to the plasma protein but with minor changes, like the addition of a proximal fucose to the carbohydrate linked to residue βGln364, and slightly different relative positions of the β- and γ-modules. Of major interest in our structures is that a previously identified calcium site in plasma fibrinogen is absent when Gly-His-Arg-Pro-amide is bound. The peptide-dependent loss of this calcium site may have significant biological implications that are further discussed. These structures provide a foundation for the detailed structural analysis of variant recombinant fibrinogens that were used to identify critical functional residues within fragment D.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi0261894