Development of coagulation regulatory proteins in the fetal and neonatal lamb

To investigate the development of coagulation regulatory proteins-protein C (PC), protein S (PS), and antithrombin (AT)-in relationship to the procoagulant protein factor X (FX), a chronically catheterized fetal ovine model was used. Infusion and sampling catheters were placed into pregnant ewes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 2002-10, Vol.52 (4), p.580-588
Hauptverfasser: MANCO-JOHNSON, Marilyn J, JACOBSON, Linda J, HACKER, Michele R, TOWNSEND, Susan F, MURPHY, James, HAY, William JR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the development of coagulation regulatory proteins-protein C (PC), protein S (PS), and antithrombin (AT)-in relationship to the procoagulant protein factor X (FX), a chronically catheterized fetal ovine model was used. Infusion and sampling catheters were placed into pregnant ewes and their fetuses and maintained from mid-gestation. From a total of 110 fetuses, 17 lambs, and 63 ewes that were studied on one to 15 occasions, 212 fetal, 88 neonatal, and 157 maternal samples were obtained. Liver tissue was obtained from 31 fetuses and 15 ewes. Plasma levels of all proteins studied were higher in the ewe than in the fetus (p < 0.0001). Plasma levels of FX, PC, and PS achieved neonatal levels by mid-gestation with mild but significant decreases during mid- and late gestation. Fetal and early neonatal plasma concentrations of these vitamin K-dependent proteins fit a model with both quadratic (p < 0.01) and linear (p < 0.01) components. The discrepant levels in mRNA relative to plasma concentration were consistent with regulatory control beyond the level of transcription. In contrast, a simple linear increase in plasma protein levels was determined for the vitamin K-independent coagulation regulatory protein, AT (p for quadratic component > 0.05). This study suggests that fetal regulation of coagulation proteins follows characteristic patterns relative to the vitamin K dependence of the protein rather than its role as a procoagulant versus regulatory protein.
ISSN:0031-3998
1530-0447
DOI:10.1203/00006450-200210000-00019