RNA editing in brain controls a determinant of ion flow in glutamate-gated channels

l-glutamate, the principal excitatory transmitter in the brain, gates ion channels mediating fast neurotransmission. Subunit components of two related classes of glutamate receptor channels have been characterized by cDNA cloning and shown to carry either an arginine or a glutamine residue in a defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 1991-10, Vol.67 (1), p.11-19
Hauptverfasser: Sommer, Bernd, Köhler, Martin, Sprengel, Rolf, Seeburg, Peter H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:l-glutamate, the principal excitatory transmitter in the brain, gates ion channels mediating fast neurotransmission. Subunit components of two related classes of glutamate receptor channels have been characterized by cDNA cloning and shown to carry either an arginine or a glutamine residue in a defined position of their putative channel-forming segment. The arginine residue in this segment profoundly alters, and dominates, the properties of ion flow, as demonstrated for one channel class. We now show that the genomic DNA sequences encoding the particular channel segment of all subunits harbor a glutamine codon (CAG), even though an arginine codon (CGG) is found in mRNAs of three subunits. Multiple genes and alternative exons were excluded as sources for the arginine codon; hence, we propose that transcripts for three subunits are altered by RNA editing. This process apparently edits subunit transcripts of the two glutamate receptor classes with different efficiency and selectivity.
ISSN:0092-8674
1097-4172
DOI:10.1016/0092-8674(91)90568-J