Human fetal central nervous system organotypic cultures

Many aspects of human neurodevelopment remain enigmatic. A main reason for this is, although there have been a significant number of morphologic and biochemical studies of neural tissues derived from human embryos and fetuses, this can only provide a static picture of the events at a given gestation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research. Developmental brain research 1991-06, Vol.60 (2), p.155-160
Hauptverfasser: LYMAN, W. D, TRICOCHE, M, HATCH, W. C, KRESS, Y, CHIU, F.-C, RASHBAUM, W. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many aspects of human neurodevelopment remain enigmatic. A main reason for this is, although there have been a significant number of morphologic and biochemical studies of neural tissues derived from human embryos and fetuses, this can only provide a static picture of the events at a given gestational age. Also, in vitro studies that focus on cells derived from these tissues have a limitation in that different cell types in dissociated tissue culture cannot interact in a 'normal' physiologic manner thereby, perhaps, altering their housekeeping and luxury functions. The present study focused on the development of a human explant organotypic culture model that may overcome the static limitation of the first example and permit a dynamic analysis of different cell types as they interact which may satisfy the second restriction. Because there is an array of developmental markers that define different cell phenotypes, this explant model may also provide a means of analyzing, for the first time, processes undefined in the human CNS. Human fetal CNS tissue obtained from second trimester abortuses was established in culture. The tissues were maintained for up to 12 weeks during which time they developed and differentiated. Sample cultures were harvested periodically and analyzed by light- and electron microscopy in combination with immunocytochemistry. Differentiation of neurons, astrocytes, oligodendrocytes and endothelial cells was documented using morphologic and biochemical criteria. As such, this model system may allow for the analysis of processes that occur during normal human fetal neurodevelopment and in pathologic conditions.
ISSN:0165-3806
DOI:10.1016/0165-3806(91)90044-J