Downstream codons in the retinoic acid receptor beta -2 and beta -4 mRNAs initiate translation of a protein isoform that disrupts retinoid-activated transcription

Retinoic acid receptors (RARs) are essential for the differentiation and maintenance of normal epithelium. In studies of RARs in breast cancer, there are striking differences in the expression of certain protein isoforms of the RARbeta gene between cells derived from normal human mammary glands and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-09, Vol.277 (38), p.35411-35421
Hauptverfasser: Chen, Lucinda I, Sommer, Karen M, Swisshelm, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retinoic acid receptors (RARs) are essential for the differentiation and maintenance of normal epithelium. In studies of RARs in breast cancer, there are striking differences in the expression of certain protein isoforms of the RARbeta gene between cells derived from normal human mammary glands and those derived from breast tumors. While the protein isoforms RARbeta2 and RARbeta4 consist of the longest open reading frames of the RARbeta2 and RARbeta4 mRNAs, respectively, we find that a fraction of scanning ribosomes bypass these upstream RARbeta2 and RARbeta4 protein start codons and initiate translation downstream. This downstream translation initiation site is identical in the RARbeta2 and RARbeta4 transcripts and generates a third RARbeta protein isoform, here termed RARbeta' (formerly human RARbeta4). RARbeta' lacks protein domains found in the N terminus of RARbeta2 and RARbeta4, including one of two zinc fingers required for DNA binding. However, RARbeta' retains the ability to heterodimerize with RXRalpha and interact with transcription cofactors. In reporter gene assays, RARbeta' repressed retinoic acid-activated transcription of co-transfected RARbeta2, RARbeta4, and RARalpha. This repression required the presence of acidic amino acids within the AF2 domain. These findings demonstrate an antagonistic role for RARbeta' in signaling by retinoic acid.
ISSN:0021-9258
DOI:10.1074/jbc.M202717200