Transcription Factor Sp1 Phosphorylation Induced by Shear Stress Inhibits Membrane Type 1-Matrix Metalloproteinase Expression in Endothelium

Membrane type 1-matrix metalloproteinase (MT1-MMP) plays a key role in endothelial cell migration, matrix remodeling, and angiogenesis. Previous studies demonstrated that a mechanical force, cyclic strain, increases MT1-MMP expression by displacing Sp1 with increased Egr-1 expression and binding to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-09, Vol.277 (38), p.34808-34814
Hauptverfasser: Yun, Sangseob, Dardik, Alan, Haga, Masae, Yamashita, Akimasa, Yamaguchi, Seiichi, Koh, Yongbok, Madri, Joseph A, Sumpio, Bauer E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membrane type 1-matrix metalloproteinase (MT1-MMP) plays a key role in endothelial cell migration, matrix remodeling, and angiogenesis. Previous studies demonstrated that a mechanical force, cyclic strain, increases MT1-MMP expression by displacing Sp1 with increased Egr-1 expression and binding to the promoter site. However, the effect of shear stress (SS) on MT1-MMP expression is poorly understood. Although Egr-1 mRNA transcription and protein was induced (7.6-fold) in response to SS ( n = 5, 0–8 h, p < 0.05), SS decreased MT1-MMP mRNA transcription and protein levels in a time-dependent fashion (10, 50, and 90% reduction at 1, 4, and 8 h, respectively; n = 5, p < 0.05). Egr-1 protein was increased after SS and cyclic strain, but Sp1 was serine-phosphorylated only after SS. SS increased Sp1 DNA binding (3.8-, 5.8-, and 2.4-fold increase at 1, 4, and 8 h, respectively; n = 5, p < 0.05) that was inhibitable by calf intestinal phosphatase. Thus, SS inhibits MT1-MMP expression despite Egr-1 up-regulation by inducing the serine phosphorylation of Sp1, which in turn increases its binding affinity for its site on the MT1-MMP promoter, reducing the ability of Egr-1 to displace it. These data illustrate the complex control of microvascular endothelial cell MT1-MMP expression in response to distinct environmental stimuli (cyclic strain versus shear stress), consisting of both the modulation of specific transcription factor expression (Egr-1) as well as transcription factor post-translational modification (serine phosphorylation of Sp1).
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M205417200