Arabinoxylan Biosynthesis in Wheat. Characterization of Arabinosyltransferase Activity in Golgi Membranes
Arabinoxylan arabinosyltransferase (AX-AraT) activity was investigated using microsomes and Golgi vesicles isolated from wheat (Triticum aestivum) seedlings. Incubation of microsomes with UDP-[14C]-β-L-arabinopyranose resulted in incorporation of radioactivity into two different products, although m...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2002-09, Vol.130 (1), p.432-441 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arabinoxylan arabinosyltransferase (AX-AraT) activity was investigated using microsomes and Golgi vesicles isolated from wheat (Triticum aestivum) seedlings. Incubation of microsomes with UDP-[14C]-β-L-arabinopyranose resulted in incorporation of radioactivity into two different products, although most of the radioactivity was present in xylose (Xyl), indicating a high degree of UDP-arabinose (Ara) epimerization. In isolated Golgi vesicles, the epimerization was negligible, and incubation with UDP-[14C]Ara resulted in formation of a product that could be solubilized with proteinase K. In contrast, when Golgi vesicles were incubated with UDP-[14C]Ara in the presence of unlabeled UDP-Xyl, the product obtained could be solubilized with xylanase, whereas proteinase K had no effect. Thus, the AX-AraT is dependent on the synthesis of unsubstituted xylan acting as acceptor. Further analysis of the radiolabeled product formed in the presence of unlabeled UDP-Xyl revealed that it had an apparent molecular mass of approximately 500 kD. Furthermore, the total incorporation of [14C]Ara was dependent on the time of incubation and the amount of Golgi protein used. AX-AraT activity had a pH optimum at 6, and required the presence of divalent cations, Mn2+ being the most efficient. In the absence of UDP-Xyl, a single arabinosylated protein with an apparent molecular mass of 40 kD was radiolabeled. The [14C]Ara labeling became reversible by adding unlabeled UDP-Xyl to the reaction medium. The possible role of this protein in arabinoxylan biosynthesis is discussed. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.003400 |