Superantigen Enhancement of Specific Immunity: Antibody Production and Signaling Pathways

Superantigens are microbial proteins that induce massive activation, proliferation, and cytokine production by CD4+ T cells via specific Vbeta elements on the TCR. In this study we examine superantigen enhancement of Ag-specific CD4+ T cell activity for humoral B cell responses to T-dependent Ags BS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2002-09, Vol.169 (6), p.2907-2914
Hauptverfasser: Torres, Barbara A, Perrin, George Q, Mujtaba, Mustafa G, Subramaniam, Prem S, Anderson, Amy K, Johnson, Howard M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superantigens are microbial proteins that induce massive activation, proliferation, and cytokine production by CD4+ T cells via specific Vbeta elements on the TCR. In this study we examine superantigen enhancement of Ag-specific CD4+ T cell activity for humoral B cell responses to T-dependent Ags BSA and HIV gp120 envelope, type I T-independent Ag LPS, and type II T-independent Ag pneumococcal polysaccharides. Injection of BSA followed by a combination of superantigens staphylococcal enterotoxin A and staphylococcal enterotoxin B (SEB) 7 days later enhanced the anti-BSA Ab response in mice approximately 4-fold as compared with mice given BSA alone. The anti-gp120 response was enhanced approximately 3-fold by superantigens. The type II T-independent Ag pneumococcal polysaccharide response was enhanced approximately 2.3-fold by superantigens, whereas no effect was observed on the response to the type I T-independent Ag LPS. The superantigen effect was completely blocked by the CD4+ T cell inhibitory cytokine IL-10. SEB-stimulated human CD4+ T cells were examined to determine the role of the mitogen-activated protein (MAP) kinase signal transduction pathway in superantigen activation of T cells. Inhibitors of the mitogen pathway of MAP kinase blocked SEB-induced proliferation and IFN-gamma production, while an inhibitor of the p38 stress pathway had no effect. Consistent with this, SEB activated extracellular signal-regulated kinase/MAP kinase as well as MAP kinase-interacting kinase, a kinase that phosphorylates eIF4E, which is an important component of the eukaryotic protein synthesis initiation complex. Both kinases were inhibited by IL-10. Thus, superantigens enhance humoral immunity via Ag-specific CD4+ T cells involving the stress-independent pathway of MAP kinase.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.169.6.2907