Mast cell exocytosis: Evidence that granule proteoglycan processing is not coupled to degranulation

It has been hypothesized that the dissolution of mast cell granules at the time of degranulation results from proteoglycan cleavage coupled to exocytosis. To address this hypothesis, we studied granule proteoglycan before and after exocytosis in dog mastocytoma cells, which solubilize granule conten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 1991-08, Vol.179 (1), p.140-146
Hauptverfasser: Ruoss, Stephen J., Gold, Warren M., Caughey, George H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been hypothesized that the dissolution of mast cell granules at the time of degranulation results from proteoglycan cleavage coupled to exocytosis. To address this hypothesis, we studied granule proteoglycan before and after exocytosis in dog mastocytoma cells, which solubilize granule contents during exocytosis. 35S-labeled proteoglycans were extracted from unstimulated whole cells and cell degranulation supernatant. Sequential anion-exchange and gel filtration chromatography, followed by specific glycosaminoglycan digestion, identified chondroitin sulfate and heparin glycosaminoglycan and proteoglycan in unstimulated cells and degranulated material alike. Glycosaminoglycan type and charge density in degranulation supernatant were unchanged compared with unstimulated cells. There was no decrease in proteoglycan size with cell activation and exocytosis. Thus, granule release and solubilization does not appear to require exocytosis-coupled degradation of granule proteoglycans. Release in association with high-m.w. proteoglycans may serve to limit rates of diffusion and activity of proteases and other mast cell mediators.
ISSN:0006-291X
1090-2104
DOI:10.1016/0006-291X(91)91346-E