Synthesis and physical characterization of a P1 arginine combinatorial library, and its application to the determination of the substrate specificity of serine peptidases

Serine peptidases are a large, well-studied, and medically important class of peptidases. Despite the attention these enzymes have received, details concerning the substrate specificity of even some of the best known enzymes in this class are lacking. One approach to rapidly characterizing substrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2002-11, Vol.10 (11), p.3637-3647
Hauptverfasser: FURLONG, Stephen T, MAUGER, Russell C, STRIMPLER, Anne M, LIU, Yi-Ping, MORRIS, Frank X, EDWARDS, Philip D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Serine peptidases are a large, well-studied, and medically important class of peptidases. Despite the attention these enzymes have received, details concerning the substrate specificity of even some of the best known enzymes in this class are lacking. One approach to rapidly characterizing substrate specificity for peptidases is the use of positional scanning combinatorial substrate libraries. We recently synthesized such a library for enzymes with a preference for arginine at P1 and demonstrated the use of this library with thrombin (Edwards et al. Bioorg. Med. Chem. Lett. 2000, 10, 2291). In the present work, we extend these studies by demonstrating good agreement between the theroretical and measured content of portions of this library and by showing that the library permits rapid characterization of the substrate specificity of additional SA clan serine peptidases including factor Xa, tryptase, and trypsin. These results were consistent both with cleavage sites in natural substrates and cleavage of commercially available synthetic substrates. We also demonstrate that pH or salt concentration have a quantitative effect on the rate of cleavage of the pooled library substrates but that correct prediction of optimal substrates for the enzymes studied appeared to be independent of these parameters. These studies provide new substrate specificity data on an important class of peptidases and are the first to provide physical characterization of a peptidase substrate library.
ISSN:0968-0896
1464-3391
DOI:10.1016/S0968-0896(02)00174-8