Simulation and optimization of peptide separation by capillary electrophoresis-mass spectrometry

The potential of capillary electrophoresis (CE) for the separation of peptides has been extensively demonstrated in the last decade. Their correct characterization and sequenciation is a difficult task that can be accomplished using CE‐mass spectrometry (CE‐MS). An important limitation of CE‐MS is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2002-07, Vol.23 (14), p.2288-2295
Hauptverfasser: Simó, Carolina, Soto-Yarritu, Pilar López, Cifuentes, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of capillary electrophoresis (CE) for the separation of peptides has been extensively demonstrated in the last decade. Their correct characterization and sequenciation is a difficult task that can be accomplished using CE‐mass spectrometry (CE‐MS). An important limitation of CE‐MS is the buffer choice since it should provide an adequate CE separation without ruining the MS signal. In this work, a new strategy is used to help to solve this limitation based on the combination of two different methodologies. Namely, an ab initio semiempirical model that relates electrophoretic behavior of peptides to their sequence is first used to obtain in a fast and easy way adequate CE buffers compatible with MS analysis. Next, CE‐MS is used to separate and characterize peptides via the determination of their relative molecular masses. The usefulness of this procedure is demonstrated analyzing in a single CE‐MS run a group of 10 standard peptides of very different nature (i.e., relative molecular masses ranging from 132 to 1037 and isoelectric points ranging from 5.69 to 10.62). It is concluded that the use of this strategy can help to overcome the buffer limitation in CE‐MS.
ISSN:0173-0835
1522-2683
DOI:10.1002/1522-2683(200207)23:14<2288::AID-ELPS2288>3.0.CO;2-8