Normal Thyroid Thermogenesis but Reduced Viability and Adiposity in Mice Lacking the Mitochondrial Glycerol Phosphate Dehydrogenase

The mitochondrial glycerol phosphate dehydrogenase (mGPD) is important for metabolism of glycerol phosphate for gluconeogenesis or energy production and has been implicated in thermogenesis induced by cold and thyroid hormone treatment. mGPD in combination with the cytosolic glycerol phosphate dehyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-09, Vol.277 (36), p.32892-32898
Hauptverfasser: Brown, Laura J., Koza, Robert A., Everett, Carrie, Reitman, Marc L., Marshall, Linda, Fahien, Leonard A., Kozak, Leslie P., MacDonald, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mitochondrial glycerol phosphate dehydrogenase (mGPD) is important for metabolism of glycerol phosphate for gluconeogenesis or energy production and has been implicated in thermogenesis induced by cold and thyroid hormone treatment. mGPD in combination with the cytosolic glycerol phosphate dehydrogenase (cGPD) is proposed to form the glycerol phosphate shuttle, catalyzing the interconversion of dihydroxyacetone phosphate and glycerol phosphate with net oxidation of cytosolic NADH. We made a targeted deletion inGdm1 and produced mice lacking mGPD. On a C57BL/6J background these mice showed a 50% reduction in viability compared with wild-type littermates. Uncoupling protein-1 mRNA levels in brown adipose tissue did not differ between mGPD knockout and control pups, suggesting normal thermogenesis. Pups lacking mGPD had decreased liver ATP and slightly increased liver glycerol phosphate. In contrast, liver and muscle metabolites were normal in adult animals. Adult mGPD knockout animals had a normal cold tolerance, normal circadian rhythm in body temperature, and demonstrated a normal temperature increase in response to thyroid hormone. However, they were found to have a lower body mass index, a 40% reduction in the weight of white adipose tissue, and a slightly lower fasting blood glucose than controls. The phenotype may be secondary to consequences of the obligatory production of cytosolic NADH from glycerol metabolism in the mGPD knockout animal. We conclude that, although mGPD is not essential for thyroid thermogenesis, variations in its function affect viability and adiposity in mice.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M202408200