Non-exercising muscle metabolism during exercise
Glycogen decrements have been observed in non-exercising muscles during exercise. We therefore investigated whether the degraded glycogen was retained within the muscle in the form of glycolytic intermediates, or whether it was effluxed from the non-exercising muscles. For these studies a suspension...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 1991-05, Vol.418 (4), p.301-307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glycogen decrements have been observed in non-exercising muscles during exercise. We therefore investigated whether the degraded glycogen was retained within the muscle in the form of glycolytic intermediates, or whether it was effluxed from the non-exercising muscles. For these studies a suspension harness was used to unload the hindlimb muscles at rest and during exercise [McDermott et al. (1987) J Appl Physiol 63:1275-1283]. Concentrations of glycogen and glycolytic intermediates glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, glycerol 3-phosphate, and lactate) were measured in non-exercising and exercising muscles (soleus, plantaris, red and white gastrocnemius) during a 90-min exercise about 15 m/min, 8% grade). On-line electromyographic analysis showed that the contractile activity in the non-exercising muscles was markedly lower than in the exercising muscles. Similar decrements in muscle glycogen levels were observed in both the non-exercising and exercising muscles at the end of the 90-min, exercise bout (P less than 0.05), despite significantly different activity profiles. An increase in tissue lactate concentrations occurred in both non-exercising and exercising muscle (P less than 0.05), although only slight changes in the glycolytic intermediates occurred. The sum total of all the accumulated glycolytic intermediates and lactate (converted to glucosyl units) in the non-exercising muscles only accounted for a small fraction of the glycogen degraded (approximately 15%-28%). We conclude that the metabolism of glycogen is enhanced in non-exercising muscle, and that glycogen utilization is uncoupled from the energetic demands of the muscle. Furthermore, the glycogen mobilized in non-exercising muscle is not retained within the muscle in other metabolite pools. |
---|---|
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/bf00550865 |