Neurotrophins and their receptors in the primary olfactory neuraxis

The primary olfactory pathway is an elegant and simple system in which to study neurogenesis and neuronal plasticity because of the simple fact that olfactory receptor neurons (ORNs) are continually generated throughout the adult lifetimes of vertebrates. Thus, neuronal birth, differentiation, survi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2002-08, Vol.58 (3), p.189-196
Hauptverfasser: Carter, Lindsay A., Roskams, A. Jane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary olfactory pathway is an elegant and simple system in which to study neurogenesis and neuronal plasticity because of the simple fact that olfactory receptor neurons (ORNs) are continually generated throughout the adult lifetimes of vertebrates. Thus, neuronal birth, differentiation, survival, axon pathfinding, target recognition, synapse formation, and cell death are developmental events that can be examined in the mature olfactory epithelium (OE). Neurotrophins (nerve growth factor, brain‐derived neurotrophic factor, and neurotrophin 3, and 4/5) are a family of bioactive peptides that exert their effects by interacting with high‐ and low‐affinity receptors on the surfaces of responsive cells, and have been implicated in several stages of neuronal development throughout the central and peripheral nervous system (CNS and PNS). There has been significant interest within the olfactory community as to how these multifunctional peptides might regulate the cycle of degeneration and regeneration of olfactory receptor neurons. The focus of this review is to highlight what is known about the actions of neurotrophins in the primary olfactory pathway, and to pinpoint future directions that will enable us to further understand their role in olfactory receptor neuron development and turnover. Microsc. Res. Tech. 58:189–196, 2002. © 2002 Wiley‐Liss, Inc.
ISSN:1059-910X
1097-0029
DOI:10.1002/jemt.10148