Bile Acid Accumulation in Gastric Mucosal Cells

Abstract Bile acids are one of the components of the gastric contents capable of disrupting the mucosal barrier to diffusion. The mechanism by which bile acids can damage the gastric epithelium is not completely understood. Several studies have emphasized mucosal lipid solubilization by bile acids i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Society for Experimental Biology and Medicine 1991-09, Vol.197 (4), p.393-399
Hauptverfasser: Batzri, Shmuel, Harmon, John W., Schweitzer, Eugene J., Toles, Raymond
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Bile acids are one of the components of the gastric contents capable of disrupting the mucosal barrier to diffusion. The mechanism by which bile acids can damage the gastric epithelium is not completely understood. Several studies have emphasized mucosal lipid solubilization by bile acids in the pathogenesis of mucosal injury. Bile acid entry into gastric mucosal cells may be a critical and early step in the genesis of mucosal injury, but this possibility has not yet been investigated. The present study was designed to explore the interaction of bile acids with dispersed gastric mucosal cells isolated from the rabbit and guinea pig stomach. Results showed that both glycocholic and deoxycholic acid rapidly associated with the gastric cells and reached a steady state concentration by 30 min. Glycocholic acid accumulated in the cells to a concentration approximately eight times greater than that in the surrounding medium. The amount of bile acid associated with the cells was greater at an acidic than at a neutral pH, and was a function of the concentration of both the cells and the bile acid. The process did not require cellular energy, was nonsaturable, and was not species specific. Experiments with 86Rb, a cytoplasmic marker, revealed that approximately one half of the cellular glycocholic acid was associated with the cytoplasmic compartment and the rest with the membranes. These findings are consistent with a combination of intracellular entrapment of the bile acids due to intracellular ionization and bile acid binding to cellular membrane components being the mechanisms by which bile acids accumulate in cells. Acid-driven bile acid accumulation may explain how relatively low luminal concentrations of bile acid can be damaging to the gastrointestinal mucosa.
ISSN:0037-9727
1535-3699
DOI:10.3181/00379727-197-43272