Reduced expression of aquaporin 4 in human muscles with amyotrophic lateral sclerosis and other neurogenic atrophies

Aquaporin 4 (AQP4) is a water channel protein that is widely distributed in human tissues. However, the precise functional role of AQP4 in skeletal muscle tissue has not yet been determined. Expression of AQP4 was reported to be reduced in muscle tissue from Duchenne muscular dystrophy patients. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathology, research and practice research and practice, 2004-01, Vol.200 (3), p.203-209
Hauptverfasser: Jimi, Takahiro, Wakayama, Yoshihiro, Matsuzaki, Yoko, Hara, Hajime, Inoue, Masahiko, Shibuya, Seiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aquaporin 4 (AQP4) is a water channel protein that is widely distributed in human tissues. However, the precise functional role of AQP4 in skeletal muscle tissue has not yet been determined. Expression of AQP4 was reported to be reduced in muscle tissue from Duchenne muscular dystrophy patients. In the regenerating phase of skeletal muscle, AQP4 expression was reduced when nerve supply was not present. However, in diseased human muscles with neurogenic atrophy including amyotrophic lateral sclerosis, there has been no data on the changes in AQP4 expression. In the present study, we investigated the expression of AQP4 at mRNA and protein levels in human muscles with neurogenic atrophy. The mean level of AQP4 mRNA was significantly lower in muscles with neurogenic atrophy than that in muscles from normal controls. The myofiber surface immunostaining with anti-AQP4 antibody in muscles with neurogenic atrophy was reduced on the surface of scattered myofibers, small angulated myofibers, and myofibers in small- and large-group atrophy despite the presence of dystrophin. Based on the present findings, we conclude that the expression of AQP4 is affected by nerve supply and is down-regulated in human muscles with neurogenic atrophy.
ISSN:0344-0338
1618-0631
DOI:10.1016/j.prp.2004.01.011