Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice

The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2002-09, Vol.58 (5), p.424-428
Hauptverfasser: Mukhopadhyay, N. K., Lord, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue 5
container_start_page 424
container_title Acta crystallographica. Section A, Foundations of crystallography
container_volume 58
creator Mukhopadhyay, N. K.
Lord, E. A.
description The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.
doi_str_mv 10.1107/S0108767302008747
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72023385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27188855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4456-b6d3bdb97c1e3e3fe84e4a010db50a38ad18a18231ca06103d388ec3bbb9256e3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EokvhB3BBuYDgEJixk9g5rrawfERQCRAfF8uxJ8U0m2ztRG3_PV52RQ8cevIrzfOMRy9jjxFeIoJ89RkQlKykAA4pFPIOW2AFkJeSF3fZYjfOd_Mj9iDG3wCAAuE-O0KONUcUC_azIROnbGumX5kNfqLgxyF73pyuXmTdGLJ58BczZX5wdOWHsxQyk02XY-78hoaYYNNnjqw5-5suZhN9b6bJW3rI7nWmj_To8B6zr29ef1m9zZtP63erZZPboiirvK2caF1bS4skSHSkCipMOt21JRihjENlUHGB1kCFIJxQiqxo27bmZUXimD3b792GMd0aJ73x0VLfm4HGOWrJgQuhyltBLlEpVe5A3IM2jDEG6vQ2-I0J1xpB75rX_zWfnCeH5XO7IXdjHKpOwNMDYKI1fRfMYH284YSq6kLWiVN77tL3dH37z3r5Y3l6AsCrpOZ71ceJrv6pJpzrJMhSf_u41u-_ywbWJ0J_EH8AV4apjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27188855</pqid></control><display><type>article</type><title>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</title><source>Access via Wiley Online Library</source><creator>Mukhopadhyay, N. K. ; Lord, E. A.</creator><creatorcontrib>Mukhopadhyay, N. K. ; Lord, E. A.</creatorcontrib><description>The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>DOI: 10.1107/S0108767302008747</identifier><identifier>PMID: 12192113</identifier><identifier>CODEN: ACACEQ</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Munksgaard International Publishers</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; decagonal quasilattice ; Exact sciences and technology ; indexing ; least path criterion ; Metals. Metallurgy ; Physics ; Quasicrystals ; Semi-periodic solids ; Single-crystal and powder diffraction ; Structure of solids and liquids; crystallography ; X-ray diffraction and scattering</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2002-09, Vol.58 (5), p.424-428</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4456-b6d3bdb97c1e3e3fe84e4a010db50a38ad18a18231ca06103d388ec3bbb9256e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108767302008747$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108767302008747$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13869479$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12192113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukhopadhyay, N. K.</creatorcontrib><creatorcontrib>Lord, E. A.</creatorcontrib><title>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>decagonal quasilattice</subject><subject>Exact sciences and technology</subject><subject>indexing</subject><subject>least path criterion</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Quasicrystals</subject><subject>Semi-periodic solids</subject><subject>Single-crystal and powder diffraction</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction and scattering</subject><issn>0108-7673</issn><issn>1600-5724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EokvhB3BBuYDgEJixk9g5rrawfERQCRAfF8uxJ8U0m2ztRG3_PV52RQ8cevIrzfOMRy9jjxFeIoJ89RkQlKykAA4pFPIOW2AFkJeSF3fZYjfOd_Mj9iDG3wCAAuE-O0KONUcUC_azIROnbGumX5kNfqLgxyF73pyuXmTdGLJ58BczZX5wdOWHsxQyk02XY-78hoaYYNNnjqw5-5suZhN9b6bJW3rI7nWmj_To8B6zr29ef1m9zZtP63erZZPboiirvK2caF1bS4skSHSkCipMOt21JRihjENlUHGB1kCFIJxQiqxo27bmZUXimD3b792GMd0aJ73x0VLfm4HGOWrJgQuhyltBLlEpVe5A3IM2jDEG6vQ2-I0J1xpB75rX_zWfnCeH5XO7IXdjHKpOwNMDYKI1fRfMYH284YSq6kLWiVN77tL3dH37z3r5Y3l6AsCrpOZ71ceJrv6pJpzrJMhSf_u41u-_ywbWJ0J_EH8AV4apjQ</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Mukhopadhyay, N. K.</creator><creator>Lord, E. A.</creator><general>Munksgaard International Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>200209</creationdate><title>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</title><author>Mukhopadhyay, N. K. ; Lord, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4456-b6d3bdb97c1e3e3fe84e4a010db50a38ad18a18231ca06103d388ec3bbb9256e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>decagonal quasilattice</topic><topic>Exact sciences and technology</topic><topic>indexing</topic><topic>least path criterion</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Quasicrystals</topic><topic>Semi-periodic solids</topic><topic>Single-crystal and powder diffraction</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction and scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, N. K.</creatorcontrib><creatorcontrib>Lord, E. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, N. K.</au><au>Lord, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2002-09</date><risdate>2002</risdate><volume>58</volume><issue>5</issue><spage>424</spage><epage>428</epage><pages>424-428</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><coden>ACACEQ</coden><abstract>The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Munksgaard International Publishers</pub><pmid>12192113</pmid><doi>10.1107/S0108767302008747</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0108-7673
ispartof Acta crystallographica. Section A, Foundations of crystallography, 2002-09, Vol.58 (5), p.424-428
issn 0108-7673
1600-5724
language eng
recordid cdi_proquest_miscellaneous_72023385
source Access via Wiley Online Library
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
decagonal quasilattice
Exact sciences and technology
indexing
least path criterion
Metals. Metallurgy
Physics
Quasicrystals
Semi-periodic solids
Single-crystal and powder diffraction
Structure of solids and liquids
crystallography
X-ray diffraction and scattering
title Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20path%20criterion%20(LPC)%20for%20unique%20indexing%20in%20a%20two-dimensional%20decagonal%20quasilattice&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Mukhopadhyay,%20N.%20K.&rft.date=2002-09&rft.volume=58&rft.issue=5&rft.spage=424&rft.epage=428&rft.pages=424-428&rft.issn=0108-7673&rft.eissn=1600-5724&rft.coden=ACACEQ&rft_id=info:doi/10.1107/S0108767302008747&rft_dat=%3Cproquest_cross%3E27188855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27188855&rft_id=info:pmid/12192113&rfr_iscdi=true