Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice
The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐d...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2002-09, Vol.58 (5), p.424-428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 5 |
container_start_page | 424 |
container_title | Acta crystallographica. Section A, Foundations of crystallography |
container_volume | 58 |
creator | Mukhopadhyay, N. K. Lord, E. A. |
description | The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets. |
doi_str_mv | 10.1107/S0108767302008747 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72023385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27188855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4456-b6d3bdb97c1e3e3fe84e4a010db50a38ad18a18231ca06103d388ec3bbb9256e3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EokvhB3BBuYDgEJixk9g5rrawfERQCRAfF8uxJ8U0m2ztRG3_PV52RQ8cevIrzfOMRy9jjxFeIoJ89RkQlKykAA4pFPIOW2AFkJeSF3fZYjfOd_Mj9iDG3wCAAuE-O0KONUcUC_azIROnbGumX5kNfqLgxyF73pyuXmTdGLJ58BczZX5wdOWHsxQyk02XY-78hoaYYNNnjqw5-5suZhN9b6bJW3rI7nWmj_To8B6zr29ef1m9zZtP63erZZPboiirvK2caF1bS4skSHSkCipMOt21JRihjENlUHGB1kCFIJxQiqxo27bmZUXimD3b792GMd0aJ73x0VLfm4HGOWrJgQuhyltBLlEpVe5A3IM2jDEG6vQ2-I0J1xpB75rX_zWfnCeH5XO7IXdjHKpOwNMDYKI1fRfMYH284YSq6kLWiVN77tL3dH37z3r5Y3l6AsCrpOZ71ceJrv6pJpzrJMhSf_u41u-_ywbWJ0J_EH8AV4apjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27188855</pqid></control><display><type>article</type><title>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</title><source>Access via Wiley Online Library</source><creator>Mukhopadhyay, N. K. ; Lord, E. A.</creator><creatorcontrib>Mukhopadhyay, N. K. ; Lord, E. A.</creatorcontrib><description>The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>DOI: 10.1107/S0108767302008747</identifier><identifier>PMID: 12192113</identifier><identifier>CODEN: ACACEQ</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Munksgaard International Publishers</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; decagonal quasilattice ; Exact sciences and technology ; indexing ; least path criterion ; Metals. Metallurgy ; Physics ; Quasicrystals ; Semi-periodic solids ; Single-crystal and powder diffraction ; Structure of solids and liquids; crystallography ; X-ray diffraction and scattering</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2002-09, Vol.58 (5), p.424-428</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4456-b6d3bdb97c1e3e3fe84e4a010db50a38ad18a18231ca06103d388ec3bbb9256e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108767302008747$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108767302008747$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13869479$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12192113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukhopadhyay, N. K.</creatorcontrib><creatorcontrib>Lord, E. A.</creatorcontrib><title>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>decagonal quasilattice</subject><subject>Exact sciences and technology</subject><subject>indexing</subject><subject>least path criterion</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Quasicrystals</subject><subject>Semi-periodic solids</subject><subject>Single-crystal and powder diffraction</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction and scattering</subject><issn>0108-7673</issn><issn>1600-5724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EokvhB3BBuYDgEJixk9g5rrawfERQCRAfF8uxJ8U0m2ztRG3_PV52RQ8cevIrzfOMRy9jjxFeIoJ89RkQlKykAA4pFPIOW2AFkJeSF3fZYjfOd_Mj9iDG3wCAAuE-O0KONUcUC_azIROnbGumX5kNfqLgxyF73pyuXmTdGLJ58BczZX5wdOWHsxQyk02XY-78hoaYYNNnjqw5-5suZhN9b6bJW3rI7nWmj_To8B6zr29ef1m9zZtP63erZZPboiirvK2caF1bS4skSHSkCipMOt21JRihjENlUHGB1kCFIJxQiqxo27bmZUXimD3b792GMd0aJ73x0VLfm4HGOWrJgQuhyltBLlEpVe5A3IM2jDEG6vQ2-I0J1xpB75rX_zWfnCeH5XO7IXdjHKpOwNMDYKI1fRfMYH284YSq6kLWiVN77tL3dH37z3r5Y3l6AsCrpOZ71ceJrv6pJpzrJMhSf_u41u-_ywbWJ0J_EH8AV4apjQ</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Mukhopadhyay, N. K.</creator><creator>Lord, E. A.</creator><general>Munksgaard International Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>200209</creationdate><title>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</title><author>Mukhopadhyay, N. K. ; Lord, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4456-b6d3bdb97c1e3e3fe84e4a010db50a38ad18a18231ca06103d388ec3bbb9256e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>decagonal quasilattice</topic><topic>Exact sciences and technology</topic><topic>indexing</topic><topic>least path criterion</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Quasicrystals</topic><topic>Semi-periodic solids</topic><topic>Single-crystal and powder diffraction</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction and scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, N. K.</creatorcontrib><creatorcontrib>Lord, E. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, N. K.</au><au>Lord, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2002-09</date><risdate>2002</risdate><volume>58</volume><issue>5</issue><spage>424</spage><epage>428</epage><pages>424-428</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><coden>ACACEQ</coden><abstract>The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Munksgaard International Publishers</pub><pmid>12192113</pmid><doi>10.1107/S0108767302008747</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0108-7673 |
ispartof | Acta crystallographica. Section A, Foundations of crystallography, 2002-09, Vol.58 (5), p.424-428 |
issn | 0108-7673 1600-5724 |
language | eng |
recordid | cdi_proquest_miscellaneous_72023385 |
source | Access via Wiley Online Library |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties decagonal quasilattice Exact sciences and technology indexing least path criterion Metals. Metallurgy Physics Quasicrystals Semi-periodic solids Single-crystal and powder diffraction Structure of solids and liquids crystallography X-ray diffraction and scattering |
title | Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20path%20criterion%20(LPC)%20for%20unique%20indexing%20in%20a%20two-dimensional%20decagonal%20quasilattice&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Mukhopadhyay,%20N.%20K.&rft.date=2002-09&rft.volume=58&rft.issue=5&rft.spage=424&rft.epage=428&rft.pages=424-428&rft.issn=0108-7673&rft.eissn=1600-5724&rft.coden=ACACEQ&rft_id=info:doi/10.1107/S0108767302008747&rft_dat=%3Cproquest_cross%3E27188855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27188855&rft_id=info:pmid/12192113&rfr_iscdi=true |