Least path criterion (LPC) for unique indexing in a two-dimensional decagonal quasilattice

The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2002-09, Vol.58 (5), p.424-428
Hauptverfasser: Mukhopadhyay, N. K., Lord, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two‐dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.
ISSN:0108-7673
1600-5724
DOI:10.1107/S0108767302008747