Transport of dendrimer nanocarriers through epithelial cells via the transcellular route

The mechanism of transport of G3 PAMAM and surface-modified (with lauroyl chains) G3 PAMAM dendrimer nanocarriers across Caco-2 cell monolayers has been investigated. Flow-cytometry studies following quenching of extracellular fluorescence demonstrated the cellular internalisation of dendrimers. Opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2004-06, Vol.97 (2), p.259-267
Hauptverfasser: Jevprasesphant, Rachaneekorn, Penny, Jeffrey, Attwood, David, D'Emanuele, Antony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of transport of G3 PAMAM and surface-modified (with lauroyl chains) G3 PAMAM dendrimer nanocarriers across Caco-2 cell monolayers has been investigated. Flow-cytometry studies following quenching of extracellular fluorescence demonstrated the cellular internalisation of dendrimers. Optical sectioning of cells incubated with fluorescein isothiocyanate (FITC)-conjugated dendrimer and lauroyl–dendrimer using confocal laser scanning microscopy revealed colocalisation of a marker for cell nuclei (4′,6-diamidino-2-phenylindole, DAPI) and FITC fluorescence, also suggesting cellular internalisation of dendrimers. Transmission electron microscopic analyses of cells incubated with gold-labelled G3 PAMAM dendrimers confirmed endocytosis-mediated cellular internalisation when dendrimers were applied to the apical domain of Caco-2 cells. These findings are in agreement with our previous studies using Caco-2 cell monolayers that showed a significant decrease of dendrimer uptake in the presence of colchicine (endocytosis inhibitor) and when temperature was reduced from 37 to 4 °C.
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2004.03.022