Crystal Structure of Type II Peptide Deformylase from Staphylococcus aureus
The first crystal structure of Class II peptide deformylase has been determined. The enzyme from Staphylococcus aureus has been overexpressed and purified in Escherichia coli and the structure determined by x-ray crystallography to 1.9 Ã resolution. The purified iron-enriched form of S. aureus pept...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-08, Vol.277 (34), p.31163-31171 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first crystal structure of Class II peptide deformylase has been determined. The enzyme from Staphylococcus aureus has been overexpressed and purified in Escherichia coli and the structure determined by x-ray crystallography to 1.9 Ã
resolution. The purified iron-enriched form of S. aureus peptide deformylase enzyme retained high activity over many months. In contrast, the iron-enriched form of the E. coli enzyme is very labile. Comparison of the two structures details many differences; however, there is no structural explanation
for the dramatic activity differences we observed. The protein structure of the S. aureus enzyme reveals a fold similar, but not identical to, the well characterized E. coli enzyme. The most striking deviation of the S. aureus from the E. coli structure is the unique conformation of the C-terminal amino acids. The distinctive C-terminal helix of the latter is replaced
by a strand in S. aureus which wraps around the enzyme, terminating near the active site. Although there are no differences at the amino acid level
near the active site metal ion, significant changes are noted in the peptide binding cleft which may play a role in the design
of general peptide deformylase inhibitors. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M202750200 |