Estrogen Mediates Mammary Epithelial Cell Proliferation in Serum-Free Culture Indirectly via Mammary Stroma-Derived Hepatocyte Growth Factor
Epithelial-stromal cell interactions are important for normal development and function of the mouse mammary gland. The steroid hormone estrogen is required for epithelial cell proliferation and ductal development in vivo. Recent studies of estrogen receptor α knockout mice indicate that estrogen-ind...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2002-09, Vol.143 (9), p.3427-3434 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epithelial-stromal cell interactions are important for normal development and function of the mouse mammary gland. The steroid hormone estrogen is required for epithelial cell proliferation and ductal development in vivo. Recent studies of estrogen receptor α knockout mice indicate that estrogen-induced proliferation is dependent upon the presence of estrogen receptor in mammary stromal cells, but not in epithelial cells. The purpose of the present study was to identify the underlying mechanism of estrogen-dependent stroma-derived effects on mammary epithelium. We have developed a minimally supplemented serum-free medium, collagen gel primary mammary coculture system to address the issue of stroma-derived, estrogen-dependent effects on epithelial cell proliferation. Conditioned medium from mammary fibroblasts or coculture with mammary fibroblasts caused increased epithelial cell proliferation and produced tubular/ductal morphology. Hepatocyte growth factor (HGF) was identified as the mediator of this effect, as the proliferative activity in fibroblast-conditioned medium was completely abolished by neutralizing antibody to HGF, whereas neutralizing antibodies to either epidermal growth factor or IGF-I had no effect. Treatment of mammary fibroblasts with estrogen increased the production of HGF. From these results we conclude that estrogen may indirectly mediate mammary epithelial cell proliferation via the regulation of HGF in mammary stromal cells and that HGF plays a crucial role in estrogen-induced proliferation in vivo. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2002-220007 |