Regulation of Glucose Transport and Transporter 4 (GLUT-4) in Muscle and Adipocytes of Sucrose-Fed Rats: Effects of N-3 Poly- and Monounsaturated Fatty Acids

Abstract The goal of this study was to compare the short-term effects of dietary n-3 polyunsaturated (fish oil) and monounsaturated (olive oil) fatty acids on glucose transport, plasma glucose and lipid controls in a dietary insulin resistance model using sucrose-fed rats. The underlying cellular an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormone and metabolic research 2002-07, Vol.34 (7), p.360-366
Hauptverfasser: Peyron-Caso, E., Fluteau-Nadler, S., Kabir, M., Guerre-Millo, M., Quignard-Boulangé, A., Slama, G., Rizkalla, S. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The goal of this study was to compare the short-term effects of dietary n-3 polyunsaturated (fish oil) and monounsaturated (olive oil) fatty acids on glucose transport, plasma glucose and lipid controls in a dietary insulin resistance model using sucrose-fed rats. The underlying cellular and molecular mechanisms were also determined in the muscle and adipose tissue. Male Sprague-Dawley rats (5 weeks old) were randomized for diets containing 57.5 % (w/w) sucrose and 14 % lipids as either fish oil (SF), olive oil (SO) or a mixture of standard oils (SC) for 3 weeks. A fourth control group (C) was fed a diet containing 57.5 % starch and 14 % standard oils. After three weeks on the diet, body weight was comparable in the four groups. The sucrose-fed rats were hyperglycemic and hyperinsulinemic in response to glucose load. The presence of fish oil in the sucrose diet prevented sucrose-induced hyperinsulinemia and hypertriglyceridemia, but had no effect on plasma glucose levels. Insulin-stimulated glucose transport in adipocytes increased after feeding with fish oil (p < 0.005). These modifications were associated with increased Glut-4 protein (p < 0.05) and mRNA levels in adipocytes. In the muscle, no effect was found on Glut-4 protein levels. Olive oil, however, could not bring about any improvement in plasma insulin, plasma lipids or Glut-4 protein levels. We therefore conclude that the presence of fish oil, in contrast to olive oil, prevents insulin resistance and hypertriglyceridemia in rats on a sucrose diet, and restores Glut-4 protein quantity in adipocytes but not in muscle at basal levels. Dietary regulation of Glut-4 proteins appears to be tissue specific and might depend on insulin stimulation and/or duration of dietary interventions.
ISSN:0018-5043
1439-4286
DOI:10.1055/s-2002-33467