Inhibition of nonviral cationic liposome-mediated gene transfer into primary human respiratory cells by interferon-γ
The effect of interferon (IFN) gamma on cationic liposome-mediated gene transfer into primary respiratory epithelial cells was investigated. Treatment of primary respiratory epithelial cells with IFN-gamma resulted in a dose-dependent increase in the intermediate filament cytokeratin 13 and a decrea...
Gespeichert in:
Veröffentlicht in: | Journal of molecular medicine (Berlin, Germany) Germany), 2002-08, Vol.80 (8), p.499-506 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of interferon (IFN) gamma on cationic liposome-mediated gene transfer into primary respiratory epithelial cells was investigated. Treatment of primary respiratory epithelial cells with IFN-gamma resulted in a dose-dependent increase in the intermediate filament cytokeratin 13 and a decrease in cellular proliferation, indicating that respiratory cells underwent squamous differentiation. IFN-gamma pretreatment resulted in a dramatic inhibition of transfection efficiency mediated by a cationic liposome (DOTAP). Incubation of squamous nasal cells with DOTAP/DNA complexes for various periods at 4 degrees C and evaluation of luciferase levels suggested that IFN-gamma pretreatment inhibits complex binding to the cells. In primary nasal and bronchial cells cytofluorimetric analysis demonstrated that IFN-gamma reduces binding of FITC-labeled complexes. The data indicate that differentiation of respiratory epithelial cells to a squamous phenotype, which may occur in chronic respiratory diseases such as cystic fibrosis, induces a refractory condition to gene transfer by nonviral cationic liposomes. |
---|---|
ISSN: | 0946-2716 1432-1440 |
DOI: | 10.1007/s00109-002-0352-4 |