Stress and Reproduction: Central Mechanisms and Sex Differences in Non-rodent Species

Despite extensive research, the mechanisms by which stress affects reproduction are unknown. Activation of stress systems could potentially influence reproduction at any level of the hypothalamo-pituitary gonadal axis. Nonetheless, the predominant impact is on the secretion of gonadotrophin releasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stress (Amsterdam, Netherlands) Netherlands), 2002-01, Vol.5 (2), p.83-100
Hauptverfasser: Tilbrook, A.J., Turner, A.I., Clarke, I.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite extensive research, the mechanisms by which stress affects reproduction are unknown. Activation of stress systems could potentially influence reproduction at any level of the hypothalamo-pituitary gonadal axis. Nonetheless, the predominant impact is on the secretion of gonadotrophin releasing hormone (GnRH) from the brain and the secretion of the gonadotrophins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), from the gonadotrophs of the anterior pituitary gland. When stress is prolonged, it is likely that secretion of the gonadotrophins will be suppressed but the effects of acute stress or repeated acute stress are not clear. Different stressors activate different pathways for varying durations, and the actions of stress vary with sex and are influenced by the predominance of particular sex steroids in the circulation. The mechanisms by which stress influences reproduction are likely to involve complex interactions between a number of central and peripheral pathways and may be different in males and females. To understand these mechanisms, it is important to determine the stress pathways that are activated by particular stressors and to establish how these pathways affect the secretion and actions of GnRH. Furthermore, there is a need to know how stress influences the feedback actions of gonadal steroids and inhibin.
ISSN:1025-3890
1607-8888
DOI:10.1080/10253890290027912