The Poststimulation Program of CD4 Versus CD8 T Cells (Death Versus Activation-Induced Nonresponsiveness)

Both CD8 and CD4 T cells undergo autocrine IL-2-induced proliferation and clonal expansion following stimulation with Ag and costimulation. The CD8 T cell response is transient because the cells rapidly become activation-induced nonresponsive (AINR) and exhibit split anergy. In these cells, the capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2002-08, Vol.169 (4), p.1822-1828
Hauptverfasser: Tham, Ee Loon, Mescher, Matthew F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both CD8 and CD4 T cells undergo autocrine IL-2-induced proliferation and clonal expansion following stimulation with Ag and costimulation. The CD8 T cell response is transient because the cells rapidly become activation-induced nonresponsive (AINR) and exhibit split anergy. In these cells, the capacity for IL-2 production is lost, but TCR-mediated IFN-gamma production and cytotoxicity are maintained. At this point, the CTL become dependent on IL-2 provided by CD4 Th cells for continued expansion. If IL-2 is available to support expansion for a brief period, AINR is reversed and the cells regain the ability to produce IL-2. In this study, we show that CD4 T cells do not become AINR, but instead are rendered susceptible to Fas-mediated activation-induced cell death following stimulation through TCR and CD28. Using z-VAD-fmk or anti-Fas ligand mAb to inhibit cell death, we demonstrate that previously activated CD4 T cells retain the ability to up-regulate c-Jun N-terminal kinase activity and IL-2 mRNA levels upon TCR engagement and no longer require costimulation. This rewiring of signaling pathways is similar to that seen following reversal of AINR in CD8 T cells. Thus, CD8 and CD4 T cells appear to use distinct mechanisms, AINR and activation-induced cell death, respectively, to limit excessive clonal expansion following a productive response, while permitting important effector functions to be expressed.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.169.4.1822