Determination of boron in high-purity tantalum materials by on-line matrix separation/inductively coupled plasma mass spectrometry
A method for the determination of ultratrace amounts of boron in high-purity tantalum materials [tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide] is described. On-line anion-exchange matrix separation combined with inductively coupled plasma mass spectrometry (IC...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2002-07, Vol.127 (7), p.930-934 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for the determination of ultratrace amounts of boron in high-purity tantalum materials [tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide] is described. On-line anion-exchange matrix separation combined with inductively coupled plasma mass spectrometry (ICP-MS) was employed for the determination of boron at the ng g(-1) level. Tantalum materials were dissolved using HF and/or HNO3 prior to analysis. The loss of boron in the sample preparation procedure was examined as the recovery of boron by adding a definite amount of boron to each tantalum material sample before decomposition, and it was almost negligible. In an anion-exchange method using 0.1 M HF carrier solution, tantalum and boron in the sample solution were first adsorbed on a strongly basic anion-exchange resin. Next, boron was eluted from the resin with 5 M HCl, whereas tantalum was retained strongly adsorbed. The eluted boron was introduced directly into the ICP-MS system for quantitative analysis at m/z 10 and 11. Because of the long elution time of boron, the transient signal was integrated in the time range 70-300 s on the chromatogram. Although the elution of boron in the time range was ca. 40% of total boron in the sample solution injected, the determination limits (10sigma) obtained by the present method were 30, 25, 15 and 13 ng g(-1) for tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide, respectively. The method was applied to the determination of boron in commercially available high-purity tantalum materials and it was found that the concentrations of boron were in the ng g(-1)-microg g(-1) range. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b201019b |