Expression of a truncated secreted form of the mGluR3 subtype of metabotropic glutamate receptor

In this study, 10 truncated constructs encompassing all or part of the extracellular ligand binding domain of the mGluR3 subtype of metabotropic glutamate receptor were generated, expressed in human embryonic kidney cells, and tested for secretion and binding of the high affinity agonist [3H]DCG-IV....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2004-06, Vol.319 (2), p.622-628
Hauptverfasser: Yao, Yi, Koo, Joseph C.P, Wells, James W, Hampson, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, 10 truncated constructs encompassing all or part of the extracellular ligand binding domain of the mGluR3 subtype of metabotropic glutamate receptor were generated, expressed in human embryonic kidney cells, and tested for secretion and binding of the high affinity agonist [3H]DCG-IV. The effect of inserting epitope tags into the N or C termini on cell secretion and radioligand binding was also examined. Secretion into the cell culture media was observed for 8 of the 10 truncated receptors and all secreted forms displayed high affinity agonist binding. The highest level of binding was observed in the C-terminal polyhistidine-tagged receptor truncated at serine 507. Reduction and enzymatic deglycosylation of the serine 507 truncated receptor using endoglycosidase H and PNGase F showed that the secreted receptor was a disulfide-linked dimer containing complex oligosaccharides. Pharmacological characterization demonstrated that the truncated receptor showed the same rank order of potency of agonist binding, a relatively small 2-fold decrease in agonist affinity, and a larger 10-fold decrease in affinity for the antagonist LY341495 compared to the full-length membrane-bound receptor. These results define the essential requirements for ligand binding to the extracellular domain of mGluR3 and highlight parameters important for the optimization of receptor expression in mammalian cells.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2004.05.032