The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression

Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2004-02, Vol.126 (1), p.6-16
Hauptverfasser: Sun, D. D., Guo, X. E., Likhitpanichkul, M., Lai, W. M., Mow, V. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed on the proteoglycan macromolecules in articular cartilage is embodied in the apparent compressive Young’s modulus and the apparent Poisson’s ratio of the tissue, and the fluid pressure is considered to be the portion above the osmotic pressure. In order to understand how proteoglycan fixed charges might affect the mechanical behaviors of articular cartilage, and in order to predict the osmotic pressure and electric fields inside the tissue in this experimental configuration, it is necessary to use a model that explicitly takes into account the charged nature of the tissue and the flow of ions within its porous interstices. In this paper, we used a finite element model based on the triphasic theory to study how fixed charges in the porous-permeable soft tissue can modulate its mechanical and electrochemical responses under a step displacement in unconfined compression. The results from finite element calculations showed that: 1) A charged tissue always supports a larger load than an uncharged tissue of the same intrinsic elastic moduli. 2) The apparent Young’s modulus (the ratio of the equilibrium axial stress to the axial strain) is always greater than the intrinsic Young’s modulus of an uncharged tissue. 3) The apparent Poisson’s ratio (the negative ratio of the lateral strain to the axial strain) is always larger than the intrinsic Poisson’s ratio of an uncharged tissue. 4) Load support derives from three sources: intrinsic matrix stiffness, hydraulic pressure and osmotic pressure. Under the unconfined compression, the Donnan osmotic pressure can constitute between 13%–22% of the total load support at equilibrium. 5) During the stress-relaxation process following the initial instant of loading, the diffusion potential (due to the gradient of the fixed charge density and the associated gradient of ion concentrations) and the streaming potential (due to fluid convection) compete against each other. Within the physiological range of material parameters, the polarity of the electric potential depends on both the mechanical properties and the fixed charge density (FCD) of the tissue. For softer tissues, the diffusion effects dominate the electromechanical response
ISSN:0148-0731
1528-8951
DOI:10.1115/1.1644562