Subcutaneous Adipocytes Can Differentiate into Bone-Forming Cells in Vitro and in Vivo

Interconversion of bone marrow osteoblasts and adipocytes has been reported previously. However, the osteogenic potential of extramedullary adipocytes is not known. Thus, we incubated a pure culture of human subcutaneous adipocytes in control medium for 1-2 weeks. Afterward, the cells were incubated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering 2004-03, Vol.10 (3-4), p.381-391
Hauptverfasser: Justesen, Jeannette, Pedersen, Steen B., Stenderup, Karin, Kassem, Moustapha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interconversion of bone marrow osteoblasts and adipocytes has been reported previously. However, the osteogenic potential of extramedullary adipocytes is not known. Thus, we incubated a pure culture of human subcutaneous adipocytes in control medium for 1-2 weeks. Afterward, the cells were incubated in either osteoblast medium (OB medium) containing various combinations of calcitriol, dexamethasone, ascorbic acid, and β-glycerophosphate or in adipocyte medium (AD medium) containing HEPES, biotin, pantothenate, insulin, triiodothyronine, dexamethasone, and isobutylmethylxanthine for 4 weeks. Expression of osteoblastic and adipocytic phenotypes was examined by determination of lineage-specific mRNA markers and in vitro adipocyte and osteoblast formation. Cells were also implanted, mixed with hydroxyapatite-tricalcium phosphate powder, in the subcutaneous tissue of immunodeficient mice in order to assess in vivo bone formation potential. One week after incubation in control medium, cells formed fusiform elongated fibroblast-like cells. In OB medium, cells stained positive for alkaline phosphatase (AP) and expressed mRNAs encoding Cbfa1/Runx2, AP, and osteocalcin. In AD medium cells reacquired adipocyte morphology with multilocular lipid-filled cells. Also, the cells expressed adipocyte-specific mRNA markers: lipoprotein lipase and peroxisome proliferator-activated receptor γ2. Bone was formed only in the in vivo implants of cells incubated in OB medium. In conclusion, extramedullary adipocytes can transdifferentiate to bone-forming cells. Because of their ease of isolation, adipocytes may be good candidates for tissue-engineering protocols aimed at creating bone tissue for the repair of nonunion fractures and large bone defects.
ISSN:1076-3279
1557-8690
DOI:10.1089/107632704323061744