Monitoring the expression profiles of doxorubicin-resistant K562 human leukemia cells by serial analysis of gene expression
We examined the expression profiles of doxorubicin-resistant K562 cells by serial analysis of gene expression (SAGE) to identify novel and/or partially characterized genes that might be related to drug resistance in human leukemia. SAGE complementary DNA (cDNA) libraries were constructed from K562 a...
Gespeichert in:
Veröffentlicht in: | International journal of hematology 2004-04, Vol.79 (3), p.276-282 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examined the expression profiles of doxorubicin-resistant K562 cells by serial analysis of gene expression (SAGE) to identify novel and/or partially characterized genes that might be related to drug resistance in human leukemia. SAGE complementary DNA (cDNA) libraries were constructed from K562 and doxorubicin-resistant K562 (K562/ADM) cells, and concatamer sequences were analyzed with SAGE 2000 software. We used 9792 tags in the identification of 1076 different transcripts, 296 of which were similarly expressed in K562 and K562/ADM cells. There were 343 genes more actively expressed in K562/ADM than in parental K562 cells and 437 genes expressed less often in K562/ADM cells. K562/ADM cells showed increased expression of well-known genes, including the genes for spectrin beta, eukaryotic translation initiation factor 1A (EIF1A), RAD23 homolog B, laminin receptor 1, and polyA-, RAN-, and PAI-1 messenger RNA-binding proteins. K562/ADM cells showed decreased expression of the genes for fatty acid desaturase 1 (FADS1), hemoglobin epsilon 1, N-myristoyltransferase 1, hemoglobin alpha 2, NADH dehydrogenase Fe-S protein 6, heat shock 90-kDa protein, and karyopherin beta 1. Quantitative reverse transcription-polymerase chain reaction analysis confirmed the increased expression of EIF1A and the decreased expression of FADS1 in K562/ADM cells. Prior to this investigation, such differences in the expression of these genes in doxorubicin-resistant leukemia cells were unknown. Although we do not provide any evidence in the present report for the potential roles of these genes in drug resistance, SAGE may provide a perspective into our understanding of drug resistance in human leukemia that is different from that provided by cDNA microarray analysis. |
---|---|
ISSN: | 0925-5710 1865-3774 |
DOI: | 10.1532/ijh97.03133 |