Requirement of ryanodine receptors for pacemaker Ca2+ activity in ICC and HEK293 cells
Intracellular Ca(2+) ([Ca(2+)](i)) oscillations seen in interstitial cells of Cajal (ICCs) are considered to be the primary pacemaker activity in the gut. Here, we show evidence that periodic Ca(2+) release from intracellular Ca(2+) stores produces [Ca(2+)](i) oscillations in ICCs, using cell cluste...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2004-06, Vol.117 (Pt 13), p.2813-2825 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intracellular Ca(2+) ([Ca(2+)](i)) oscillations seen in interstitial cells of Cajal (ICCs) are considered to be the primary pacemaker activity in the gut. Here, we show evidence that periodic Ca(2+) release from intracellular Ca(2+) stores produces [Ca(2+)](i) oscillations in ICCs, using cell cluster preparations isolated from mouse ileum. The pacemaker [Ca(2+)](i) oscillations in ICCs are preserved in the presence of dihydropyridine Ca(2+) antagonists, which suppress Ca(2+) activity in smooth muscle cells. However, applications of drugs affecting either ryanodine receptors or inositol 1,4,5-trisphosphate receptors terminated [Ca(2+)](i) oscillations at relatively low concentrations. RT-PCR analyses revealed a predominant expression of type 3 RyR (RyR3) in isolated c-Kit-immunopositive cells (ICCs). Furthermore, we demonstrate that pacemaker-like global [Ca(2+)](i) oscillation activity is endowed by introducing RyR3 into HEK293 cells, which originally express only IP(3)Rs. The reconstituted [Ca(2+)](i) oscillations in HEK293 cells possess essentially the same pharmacological characteristics as seen in ICCs. The results support the functional role of RyR3 in ICCs. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.01136 |