UV-dependent Alternative Splicing Uncouples p53 Activity and PIG3 Gene Function through Rapid Proteolytic Degradation

The p53-inducible gene 3 ( PIG3 ) is a transcriptional target of the tumor suppressor protein p53 and is thought to play a role in apoptosis. In this report, we identify a novel alternatively spliced product from the PIG3 gene that we call PIG3AS (PIG3 alternative splice). PIG3AS results from altern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-06, Vol.279 (23), p.24171-24178
Hauptverfasser: Nicholls, Chris D, Shields, Michael A, Lee, Patrick W K, Robbins, Stephen M, Beattie, Tara L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The p53-inducible gene 3 ( PIG3 ) is a transcriptional target of the tumor suppressor protein p53 and is thought to play a role in apoptosis. In this report, we identify a novel alternatively spliced product from the PIG3 gene that we call PIG3AS (PIG3 alternative splice). PIG3AS results from alternative pre-mRNA splicing that skips exon 4 of the five exons included in the PIG3 transcript. The resulting protein product shares its first 206 amino acids with PIG3 but has a unique 42-amino acid C terminus. In unstressed cells and after most DNA damage conditions that induce transcription from the PIG3 gene, production of the PIG3 transcript dominates. However, in response to UV light, pre-mRNA splicing shifts dramatically in favor of PIG3AS. Unlike the PIG3 protein, the PIG3AS protein is rapidly degraded with a short half-life and is stabilized by proteasome inhibition. Our results illustrate the first example of an endogenous, UV-inducible, alternative splicing event and that control of the splicing machinery is involved in the cellular DNA damage response. They also suggest that rapid proteolytic degradation represents a cellular mechanism for uncoupling p53 activity from PIG3 gene activation that is independent of promoter selectivity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M401049200