Modulation of the Stathmin-like Microtubule Destabilizing Activity of RB3, a Neuron-specific Member of the SCG10 Family, by Its N-terminal Domain

RB3 is a neuron-specific homologue of the SCG10/stathmin family proteins, possessing a unique N-terminal membrane-associated domain and the stathmin-like domain at the C terminus, which promotes microtubule (MT) catastrophe and/or tubulin sequestering. We examined herein the contribution of the N-te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-05, Vol.279 (22), p.23014-23021
Hauptverfasser: Nakao, Chitose, Itoh, Tomohiko J., Hotani, Hirokazu, Mori, Nozomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RB3 is a neuron-specific homologue of the SCG10/stathmin family proteins, possessing a unique N-terminal membrane-associated domain and the stathmin-like domain at the C terminus, which promotes microtubule (MT) catastrophe and/or tubulin sequestering. We examined herein the contribution of the N-terminal subdomain of RB3 to the regulation of MT dynamics. To begin with, we determined the effects of full-length (RB3-f) and short truncated (RB3-s) forms of RB3 on the polymerization of MT in vitro. RB3-s had a deletion of amino acids 1–75 from the N terminus, leaving the so-called stathmin-like domain, consisting of residues 76–217. Although both RB3-f and RB3-s exhibited MT-depolymerizing activity, RB3-f was less effective. The binding affinity for tubulin was also lower in RB3-f. Direct observation of the dynamics of individual MTs using dark field microscopy revealed that RB3-s slowed MT elongation velocity, increased catastrophes, and reduced rescues. This effect is almost identical to that by stathmin/oncoprotein 18. On the other hand, the MT elongation rate increased at lower concentrations of RB3-f. In addition, RB3-f, indicated higher rescue frequency than control as well as the catastrophe in a dose-dependent manner. The functionality of RB3-f indicated that full-length RB3 has not only stathmin-like MT destabilizing activity but also MT-associated protein-like MT stabilizing activity. Possibly, the balance of these activities is altered in a concentration-dependent manner in vitro. This interesting regulatory role of the unique N-terminal domain of RB3 in MT dynamics would contribute to the physiological regulation of neuronal morphogenesis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M313693200