Comparison of Hadamard Transform and Signal-Averaged Detection for Microchannel Electrophoresis
A Hadamard transform (HT) detection method for microchip capillary electrophoresis with laser-induced fluorescence and a charge-coupled device (CCD) is described and compared to signal-averaged detection. A low-noise CCD camera is used to image a section of a separation channel where each camera pix...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2004-06, Vol.76 (11), p.3214-3221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Hadamard transform (HT) detection method for microchip capillary electrophoresis with laser-induced fluorescence and a charge-coupled device (CCD) is described and compared to signal-averaged detection. A low-noise CCD camera is used to image a section of a separation channel where each camera pixel can be thought of as a unique detector. For signal averaging, electropherograms corresponding to individual pixels can be averaged for improved S/N. HT detection is performed on each pixel electropherogram to generate a contour plot electropherogram. The multiple injections required for HT provides an enhancement at the cost of longer times for the pseudorandom injection sequences. A short sample injection length of 0.25 s is used to reduce the overall analysis time and improve sensitivity compared to previously published results. An injection sequence is performed on the microchip that is based on a cyclic S-matrix of 513 elements that generates an 8-fold improvement in S/N compared to a single injection. This spatially resolved HT detection method is also capable of performing a multicomponent separation. Signal-averaged HT and single-injection data are compared to experimental HT and single-injection results. The unique capabilities of each method are described. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac035404z |