Gas Exchange Responses to Constant Work-Rate Exercise in Patients with Glycogenosis Type V and VII

During constant work-rate exercise above the lactic acidosis threshold, oxygen consumption fails to plateau by 3 minutes, but continues to rise slowly. This slow component correlates closely with the rise in lactate in normal subjects. We investigated if oxygen consumption during constant work-rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine 2004-06, Vol.169 (11), p.1238-1244
Hauptverfasser: Ong, Hean-Yee, O'Dochartaigh, Conor S, Lovell, Sharon, Patterson, Victor H, Wasserman, Karlman, Nicholls, D. Paul, Riley, Marshall S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During constant work-rate exercise above the lactic acidosis threshold, oxygen consumption fails to plateau by 3 minutes, but continues to rise slowly. This slow component correlates closely with the rise in lactate in normal subjects. We investigated if oxygen consumption during constant work-rate exercise could rise after 3 minutes in the absence of a rise in lactate. We studied five patients with McArdle's disease, one patient with phosphofructokinase deficiency and six normal subjects. Subjects performed two 6-minute duration constant work-rate exercise tests at 40 and 70% of peak oxygen consumption. During low-intensity exercise, oxygen consumption reached steady state by 3 minutes in both groups. Lactate rose slightly in control subjects but not in patients. During high-intensity exercise, oxygen consumption rose from the third to the sixth minute by 144 (21-607) ml/minute (median and range) in control subjects and by 142 (73-306) ml/minute in patients (p = not significant, Mann-Whitney U test). Over the same period, lactate (geometric mean and range) rose from 2.68 (1.10-5.00) to 5.39 (2.70-10.00) mmol/L in control subjects, but did not rise in patients (1.20 [0.64-1.60] to 0.70 [0.57-1.20] mmol/L). We conclude that the slow component of oxygen consumption during heavy exercise is not dependent on lactic acidosis.
ISSN:1073-449X
0003-0805
1535-4970
DOI:10.1164/rccm.200307-974OC