Extracellular matrices of the avian ovarian follicle. Molecular characterization of chicken perlecan
In egg-laying species, such as the chicken, the mode of transport of lipoprotein particles from the capillary plasma to endocytic receptors on the oocyte surface is largely unknown. Here we show by molecular characterization that the large prominent heparan sulfate proteoglycan of extracellular matr...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-05, Vol.279 (22), p.23486-23494 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In egg-laying species, such as the chicken, the mode of transport of lipoprotein particles from the capillary plasma to endocytic receptors on the oocyte surface is largely unknown. Here we show by molecular characterization that the large prominent heparan sulfate proteoglycan of extracellular matrices, termed perlecan or HSPG2 (the product of the hspg2 gene), is a component of ovarian follicles that may participate in this process. However, although normally a major HSPG of basement membranes or basal laminae, in chicken follicles, perlecan is absent from the membranous structure between the theca interna and granulosa cell layers, which to date has been considered a bona fide basement membrane. Rather, the protein is localized in the extracellular matrix of theca externa cells, which produce this HSPG. Furthermore, in chicken testes, perlecan is localized in the peritubular spaces but in less organized fashion than the classical basement membrane components, agrin and laminin. All five domains and structural hallmarks of chicken perlecan (4071 residues) have been conserved in its mammalian counterparts. We have produced the recombinant domain II (containing low density lipoprotein (LDL) receptor-like binding repeats) of chicken perlecan and demonstrate its capacity to bind LDL and very low density lipoprotein (VLDL), apolipoprotein B-containing lipoproteins ultimately destined for uptake into oocytes via members of the low density lipoprotein receptor family. Binding to perlecan heparan sulfate side chains may facilitate the interaction of lipoproteins with domain II. Based on the current results and on domain-domain interactions revealed by recent ultrastructural investigations of the LDL receptor, nidogen, and laminin (Rudenko, G., Henry, L., Henderson, K., Ichtchenko, K., Brown, M. S., Goldstein, J. L., and Deisenhofer, J. (2002) Science 298, 2353-2358 and Takagi, J., Yang, Y., Liu, J. H., Wang, J. H., and Springer, T. A. (2003) Nature 424, 969-974), we propose a novel role of perlecan in mediating plasma-to-oocyte surface transport of VLDL particles. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M312694200 |